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Abstract We present the application of novel diagnostics to the spectroscopic

observation of a Coronal Mass Ejection (CME) on disk by the Extreme Ultravi-

olet Imaging Spectrometer (EIS) on the Hinode spacecraft. We apply a recently

developed line profile asymmetry analysis to the spectroscopic observation of

NOAA AR 10930 on 14-15 December 2006 to three raster observations before

and during the eruption of a 1000 km/s CME. We see the impact that the

observer’s line-of-sight and magnetic field geometry have on the diagnostics

used. Further, and more importantly, we identify the on-disk signature of a high-

speed outflow behind the CME in the dimming region arising as a result of the

eruption. Supported by recent coronal observations of the STEREO spacecraft,

we speculate about the momentum flux resulting from this outflow as a secondary

momentum source to the CME. The results presented highlight the importance

of spectroscopic measurements in relation to CME kinematics, and the need for

full-disk synoptic spectroscopic observations of the coronal and chromospheric

plasmas to capture the signature of such explosive energy release as a way of

providing better constraints of CME propagation times to L1, or any other point

of interest in the heliosphere.
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1. Introduction

In this short forward-looking and speculative paper, we present an extended anal-
ysis of observations of NOAA AR 10930 from the Extreme-ultraviolet Imaging
Spectrometer (EIS; Culhane et al., 2007) on Hinode (Kosugi et al., 2007) between
19:00 UT December 14 2006 and 06:00 UT December 15 2006. This time period
saw an X-Class flare and a ∼1000 km/s halo CME1 and coronal dimming event
(e.g., Kahler and Hudson, 2001, Attrill et al., 2008) that emanated from this
complex active region at around 20:12 UT.

We expand on the analysis of McIntosh et al. (2007), McIntosh (2009), and
McIntosh, Burkepile, and Leamon (2009a), exploiting the rare detailed spec-
troscopic measurements of dimming region evolution that were first studied by
Harra et al. (2007). EIS provides a tantalizing look at the dynamic behavior of
EUV emission lines over the course of the eruption. The interpretation of the
dynamic evolution of the non-thermal line widths presented forms a extension of
the challenge posed by McIntosh (2009) to the rapidly increasing sophistication
of numerical CME models: specifically that they need to cope with the complex
thermodynamics of the CME source region. Clearly, the relationship between the
dimming region and CME is one that grows considerably when only narrowband
spectroscopic observations are considered. Therefore, rigorously establishing the
poorly understood physical connection between CMEs and coronal dimmings
using detailed spectroscopic measurement is a must. Fortunately, there is an
ever-growing list of investigations in the literature (Harrison and Lyons, 2000;
Imada et al., 2007; Harra et al., 2007; Bewsher, Harrison, and Brown, 2008; Jin
et al., 2009; Harra, 2009) that, we hope, will continue to expand with ongoing EIS
observation and the launch of IRIS, the Interface Region Imaging Spectrograph2,
in late 2012.

In the following sections we describe the observations used and the technique
developed to assess the asymmetry of the emission line profiles (e.g., De Pontieu
et al., 2009; McIntosh and De Pontieu, 2009), new imaging results that validate
the spectral analysis, how we interpret those datasets, and finally, speculate on
the implications of the results on the kinematic properties of the CME itself.

2. Observations & Analysis

The dataset of interest comprises three spectroheliogram “raster” observations
(19:20-21:34 UT, 01:15-03:30, 04:10-06:24 UT), targeted at the trailing edge of
the active region that is the source of the event studied. The EIS observations
are reduced using the IDL Solarsoft (Freeland and Handy, 1998) eis prep
algorithm which corrects for cosmic ray hits, hot pixels, detector bias, and dark
current, and converts data numbers to intensities (in erg cm−2 s−1 sr−1 Å−1).

1The CME properties were automatically derived from SOHO/LASCO data by the
NASA/GSFC CDAW (http://cdaw.gsfc.nasa.gov/) and the Royal Observatory of Bel-
gium/SIDC CACTUS (http://www.sidc.be/cactus/; Robbrecht and Berghmans, 2004) cata-
logues.
2See the IRIS website (http://iris.lmsal.com/) for more information about the mission.
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Figure 1. Representative pre-CME images of NOAA AR 10930 from SOHO and Hinode. From
left to right we show the full-field EIT 195Å and MDI LOS magnetogram with Hinode/EIS
and Hinode SOT/SP images inlaid for reference respectively. The red and blue dashed regions
in the right panel respectively show the EIS field of view and region of the composite MDI/SP
magnetogram extrapolation used to provide context below.

Each EIS raster is comprised of 256 horizontal (West to East) mirror mech-
anism steps with the 1′′ slit at a spacing of 1′′ and a height of 256′′ and has
information in nine 24-pixel wide spectral windows. At a spectral resolution of
22.3mÅ, and wavelength of 195Å, one pixel on the detector is equivalent to a
velocity of ∼34 km/s. Panel A of Fig. 1 shows the region surrounding AR 10930
provided by the 195Å passband image of SOHO/EIT (Delaboudinière et al.,
1995) taken at 19:13 UT which is inlaid with the peak line intensity of the EIS
195Å raster.

The SOT Spectro-Polarimeter (SP) rastered the region of interest twice during
the time of interest (14 December 2006 22:00-23:03 UT and 15 December 2006
05:45-06:48) taking 1000 stepped measurements per raster in Stokes I, Q, U
& V in Fe I 6301.5, 6302.5Å and binning two-by-two pixels on board to give
an effective (linear) spatial scale of 0.32′′. The SP data were reduced using
the standard settings of the sp prep routine in the SOT software tree. The
Stokes polarization signals measured by SP are inverted into a set of physical
parameters that describe the vector magnetic field (field strength B, inclination
from the local normal ψ, azimuth φ, filling factor Sα, etc) and local plasma
conditions using the approach of Skumanich and Lites (1987): seeking to simul-
taneously minimize the least-squares fit of four Stokes profiles with analytic
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descriptions of the polarization signals under the Zeeman effect in a Milne-
Eddington atmosphere. The Stokes inversion shown here is executed using the
MERLIN algorithm (Lites et al., 2007) that has recently been developed at
NCAR under the framework of the Community Spectro-polarimetric Analysis
Center (CSAC; http://www.hao.ucar.edu/projects/csac/) for use with SP. The
full SP Stokes vector maps are shown, for reference, in McIntosh, Burkepile, and
Leamon (2009a).

An example of an SP line-of-sight (LOS) magnetogram, constructed from the
inverted Stokes I, Q, U & V measurements, allows us to look in detail at the
LOS field: B|| = SαB cosψ and is inlaid in the full-disk LOS magnetogram from
SOHO/MDI (Scherrer et al., 1995) and shown in panel B of Fig. 1. Note that
we have used the full-disk SOHO images/magnetograms to align the sub-field
Hinode observations of EIS and SOT—this allows us to correct the pointing
of the Hinode data to within 3′′. Indeed, using the SOHO data as a pointing
reference has the added advantage of allowing good coalignment between EIS
and SOT. In Fig. 1B, the subfield covered by EIS is indicated by a red dashed
outline while the blue dashed outline marks a region for which we extract a
potential field extrapolation for the purpose of later discussion (see, Fig. 5).

2.1. R-B Analysis

Following the description of De Pontieu et al. (2009) and McIntosh and De
Pontieu (2009) we perform a ‘Red Minus Blue’ (R-B) profile asymmetry analysis
on spectral lines in the EIS data that are not significantly impacted by spectral
blends in the relatively narrow (24 pixel) spectral windows used, i.e., the Fe XIII
202Å and Fe XIV 274Å lines. The R-B analysis involves several steps. First we
fit a single Gaussian shape to the emission line profile at each pixel to establish
the line centroid. Once determined, we sum the amount of emission in narrow
(∼24 km/s wide) spectral regions symmetrically placed about the determined
centroid in a line profile interpolated to ten times the spectral resolution. We
then subtract the red and blue wing contributions to the interpolated profile to
make a filtergram sampling a particular velocity range. A positive value of R-B
indicates an asymmetry in the red wing of the line, which we can interpret as
the signature of excess downflowing material at that velocity while, conversely,
a negative value of R-B would indicate an excess of upflowing material.

Figures 2 and 3 show the peak line intensities (top row), R-B at 110 km/s
(middle row), and at 160 km/s (bottom row) for the Fe XIII 202Å and Fe XIV
274Å lines respectively for the three phases of the dimming observed (left column
- 19:20-21:34 UT; middle - 01:15-03:30 UT; right - 04:10-06:24 UT). We note that
movies of the complete velocity range are available online and the presence of
the vertical anomaly in the pre-eruption spectroheliograms that were caused by
a couple of bad detector read outs at a few slit positions.

The three movies supporting Fig. 3 (Movies 1 through 3) show the progression
of the R-B analysis for the Fe XIV 274Å line from 40 km/s through 200 km/s in
context with the peak line intensity, 1/e line width, and (relatively calibrated)
Doppler velocity over the course of the dimming event observed by EIS. In all of
the movies we notice the general correspondence between the regions of enhanced
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line broadening, significant blue wing asymmetries and the darkest coronal loop
structures as was noted, and discussed, in McIntosh and De Pontieu (2009).
During the dimming event we notice the extension of the excess non-thermal
broadening of the line into the regions far from the magnetic footpoints (and
associated blue wing asymmetry) of the dimming region. It is this extended,
and dynamic, variation of the line widths that McIntosh (2009) attributed to
the growth of Alfvén waves on the now open, less dense, coronal magnetic field
lines behind the CME. However, De Pontieu et al. (2009) and McIntosh and De
Pontieu (2009) suggested that the blueward asymmetries in a wide variety of lines
formed at transition region and coronal temperatures may be caused by upflows
from chromospheric spicules that are associated with hot upflows at ∼100 km/s.
Given this interpretation and our observation of excess blueward asymmetries
where the linewidths are enhanced, we would expect that a significant portion of
the excess broadening at the magnetic footprint of these regions is caused by the
presence of high velocity spicular outflows. Correctly aportioning the observed
broadening there to spicular outflows or larger amplitude Alfvénic motions of
the roots of the magnetic field lines is difficult without higher temporal, spatial,
and spectral resolution data. This is an issue we will return to below.

3. Results

The temporal evolution of the line intensity are as described in McIntosh et al.

(2007) and McIntosh (2009), where in the central panels of the top row we see
a sudden dimming to the South-East of the active region between the first and
second rasters; there is a ∼75% reduction in intensity in that region between the
first two images. By the third raster, we see some filling of the region has taken
place close to the active region (McIntosh et al., 2007). We see that the bulk
of the dimming originates in the loop complexes that originate in the positive
polarity flux domains at [x, y] = [450′′,−170′′] (location 1) and [530′′,−150′′]
(location 2) in Fig. 1. These loop systems span the South-Eastern portion of
the active region connecting it to the negative polarity flux at [650′′,−160′′], the
sunspot, and surrounding flux. Aspects of this connectivity are shown in Fig. 5.

Prior to the eruption (the first columns of Fig. 2 and 3) we see a very weak
blue wing asymmetry in Fe XIII at 110 km/s in location 1 that is fainter still
in Fe XIV, but there is no obvious signal in the 160 km/s asymmetry map
there. There are regions of high velocity blue asymmetries (suggestive of up-
flows) present in the region prior to the eruption however and perhaps the most
prevalent is that at [660′′,−130′′] which is on the darker loops coming out of
the North of the sunspot where we have seen similar multi-thermal outflow
signatures before (cf., McIntosh, 2009). We also note the clear signature of hot
(Fe XIV) upflows in the negative polarity region at the southern portion of the
active region [630′′,−160′′] while it is puzzling no clear signature exists in the
Fe XIII emission.

After the eruption, when the corona behind the CME is open, we see that
the asymmetry maps have changed considerably, signatures of strong upflows
are now seen in the flux concentrations at the bottom of the dimming region
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Figure 2. Three phases of evolution of the CME as observed in the Fe XIII 202Å emission
line peak intensity (top row) and R-B analysis maps (see text for details of the R-B method)
showing the R-B maps at 100 km/s (middle row) and 160 km/s (bottom row). The color of
the R-B maps indicate the net direction of the plasma motion at that velocity, red regions
suggest net downflow while blue regions suggest net upflow.

and over more of the active region. The most conspicuous of the new upflow
regions in both spectral lines at 110 and 160 km/s is rooted in location 2, now
at [560′′,−150′′], the small flux concentration 50′′ to its East and the positive
polarity region at the other end of the dimming region [740′′,−220′′].

In both lines, but certainly clearer in 274Å3, the southern portion of the
sunspot region (e.g., [670′′,−170′′]) is showing larger contiguous regions of up-

3We suspect that, while the 202Å Fe XIII emission line is spectrally clean according to the
EIS spectral atlas (Brown et al., 2008), there may well be a subtle, undocumented blend or
background issue in the red wing of the line that is affecting the R-B analysis. Regardless of
this issue, there is dominant blue wing signature in the magnetic regions post-eruption that is
greater in magnitude than this “contamination”. We are aware of the issue with this line and
are exploring multiple EIS datasets to identify what is going on.
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Figure 3. Three phases of evolution of the CME as observed in the Fe XIV 274Å emission
line peak intensity (top row) and R-B analysis maps (see text for details of the R-B method)
showing the R-B maps at 100 km/s (middle row) and 160 km/s (bottom row). The color of the
R-B maps indicate the net direction of the plasma motion at that velocity, red regions suggest
net downflow while blue regions suggest net upflow. Movies 1, 2, and 3 of the online material
are provided to support the three columns of the figure from left to right respectively.

flow. Interestingly, this location was studied in detail by McIntosh, Burkepile,

and Leamon (2009a) and it was noted that the penumbral structure of the region

disappeared after the eruption, not to return while the region was visible on the

disk. This observation will enter into our deliberations of what we are seeing

and why (below). We also note that, in Fe XIII, we still see the weak upflow

signal from location 1 although it appears to become increasingly extended as

the active region complex rotates towards the limb.

Of course, in addition to the upflows that become visible over the course of

the event, we see high speed hot downflows in certain locations. These are most

clearly idenified as the bright red regions (e.g., at [700′′, 190′′]) most easily seen

in Fe XIV. We see that these downflows occur at the bottoms of the bright,
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STEREO - B SECCHI/EUVI 171Å
Feb 12 2009 16:01UT

Figure 4. STEREO SECCHI/EUVI B image taken at 16:01UT on February 12, 2009. The
movie that accompanies this figure shows four hours of evolution in the small active active
region in the figure inset at a cadence of 95s. The signature of the plasma “blobs” is clearly
visible in the movie as a bursty outflow that appears to travel along the magnetic loop struc-
tures that comprise the AR. These blobs are visibly traveling outward from the surface before
and throughout the eruption.

compact, post-eruption loops that form as the corona starts to close behind the
CME. Incidentally, these downflows are reduced in the later phase of the event.

This analysis, maps and associated movies, provide further interesting insight
into the reaction of the coronal plasma to the morphology change imposed on it
by the eruption of the CME. In the following section we will attempt to place
this analysis in context and provide some insight into the possible impact of the
on-disk changes to the CME itself.

3.1. STEREO Images the Relentless Outflow

As has been demonstrated by McIntosh and De Pontieu (2009) the significant
line profile asymmetries observed here have been connected with the visual
appearance of plasma “blobs” that are visible in broadband coronal imaging
diagnostics from TRACE, Hinode/XRT and the STEREO spacecraft. In Fig 4
and the accompanying movie (Movie 4) we see a small, asymmetric coronal dim-
ming event that was observed in the Fe IX/X 171Å passband by SECCHI/EUVI
(Howard et al., 2008) on STEREO “Behind” on February 12, 2009 as part of
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a special quadrature observation sequence. During this sequence a 171Å image
was taken every 95s. The purpose of including this intriguing observation in the
present paper is two-fold. It highlights that the energy release into the corona,
solar wind through the magnetic regions of the lower atmosphere is relentless,
and that EUV imagers can provide some valuable information about more than
the morphology of the coronal plasma.

The small active region near the center of the disk (NOAA AR 11012) was
a prolific source of plasma blobs, which, as McIntosh and De Pontieu (2009)
has demonstrated, are rooted in the same location as the multi-thermal coronal
emission line asymmetries, and dynamic Type-II spicules that display similar
velocity characteristics. It is fortunate that while spectroscopic instruments like
EIS are burdened by the line-of-sight sensitivity of the weak plasma emission due
to the spicule driven mass outflow, broadband imagers do not suffer the same
effects, as spicule driven events are unlikely to be Doppler shifted out of the
passband. These discrete, quasi-periodic mass loading events are visible on most
coronal loops provided that the net brightness of the those loops is low enough
(they can be long, or low density): then the 5% quasi-periodic mass injections
are quite easily visible on the loop system.

Prior to the eruption of the AR (at 18:07UT) we readily see the relentless
release of hot mass heading upward into the corona above. As the corona is
opened by the small filament eruption, the loop system to the East of the small
active region is forced outward. The locations tethering those stretched out field
lines continue to show the transmission of blobs throughout the dimming event.

We expect that it may be possible to use this form of EUV imaging data to
study in some detail the energetics and (quasi-)periodicity of the mass loading
events occurring before, during and after an event. Our suspicion is that the
quasi-periodicity of the mass-loading events on those magnetic field lines and the
apparent association of these events with Alfvén waves present an environment
in which Alfvén wave dissipation can drive the resulting fast wind stream behind
the CME. A similar assertion is made when considering blob-like activity in polar
plumes and their impact on the fast wind in polar coronal holes (McIntosh et al.,
2009b). This is discussed in more detail below.

4. Discussion

It is clear from the discussion above that the R-B maps of the coronal plasma
change dramatically over the course of the event studied. We should stress that
places where upflows are seen after the eruption are also likely to be sources of
upflow before the event (an assertion validated by the STEREO observations,
albeit of a different event) and this factor is critical to understanding what we
observe. The reason for this apparent “switch-on” in the spectroscopic mea-
surements must be largely geometric, the viewing angle between the magnetic
field direction (along which the flows occur) and the line-of-sight is critical for
determining the appearance of these weak blue Doppler asymmetries in relation
to the bulk of the line emission. On highly inclined field lines to the observer’s
line-of-sight we will see little of the field directed motion, cos θ is small and the
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true velocity of the upflow component is shifted towards lower velocities by that
factor, with the end result that the upflow emission becomes part of the bulk
of the line, rendering it practically invisible to our analysis4. Conversely, when
the observer is looking straight down on one of these field lines, we are able to
see both the peak (weak) emission and the blue wing contribution. Depending
on the relative magnitude of the blue wing contribution, the net effect of fitting
the line profile with a single Gaussian profile is a larger 1/e width (as discussed
in McIntosh et al. 2009b) and an additional weighting of the line centroid to
the blue by a few km/s. This additional profile broadening in the magnetic
footpoints of the dimming region (in terms of a single Gaussian fit) augments
the line broadening reported by McIntosh (2009). We speculate that we may
have a two-stage process of mass-loading at the bottom of those field lines and
release of Alfvén waves driven by the generation process of the mass-loading
events and/or the change in tension along the field line due to the mass loading.
These waves then propagate outward.

It is important to note that the emission observed by EIS over these strong
magnetic field regions has at least two components. The R-B analysis we present
is just one way of validating the weaker outflow component, and one that does
not prescribe a particular functional form to the distribution observed. While
the excess wing emission looks, to all intents and purposes, Gaussian in nature
we believe that multi-Gaussian fits to the data are informative, validate the
presence of the high-velocity component, but offer little in terms of the complete
physical description of these potentially important velocity distributions.

A snapshot of the magnetic field geometry of this active region prior to
the eruption is shown in Fig. 5. Using the composite MDI/SP line of sight
magnetogram shown in Fig. 1 we compute the associated potential field and
plot some of the field lines rooted in the blue-dashed region to get a picture of
magnetic connectivity in the region. Unfortunately, it is unlikely that this line-
of-sight magnetogram evolution offers much insight into the subtleties of the
field geometry change following the CME. While there is a clear impact on the
chromospheric (Ca IIH) and photospheric (G band) emission in the vicinity of
the sunspots (as reported in McIntosh, Burkepile, and Leamon, 2009a), and in
their penumbral structure following the eruption (as we have noted above), the
spectro-polarimetric signal relative to that change is subtle and, to all practical
purposes, hard to decipher (especially given the proximity of this region to the
limb). The complexity of Stokes profile interpretation, and the resulting field
representation, in the SP measurements is a topic we will leave to a more detailed
subsequent investigation.

In light of the difficulties with interpreting the SP data we suggest to consider
our R-B maps as an interpretative guide to the magnetic geometry. So, as the
coronal magnetic field lines open up in response to the eruption of the CME
we start to see a larger component of the upflow rooted ubiquitously in strong
magnetic flux concentrations (De Pontieu et al., 2009; McIntosh and De Pontieu,
2009) along the line-of sight observed with EIS. These outflows on the now

4A study of this active region complex crossing the solar disk, and its impact on R-B analysis,
will be completed shortly and be presented in the literature.
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Figure 5. A snapshot of the potential field extrapolation of the active region studied before
the eruption. We have plotted the magnetic field lines that are rooted in the blue dashed region
of Fig. 1. The background image is that of the TRACE 1600Å passband and shows the mixture
of dark spot structure and brighter plage emission distributed around this complex AR.

open magnetic field lines are clearly oriented behind the CME, the plasma is
hot (>1MK) and, as such has enough thermal pressure to overcome the Sun’s
gravitational field on those field lines (Parker, 1991) and is, to all intents and
purposes, a stream of solar wind. The strength of the magnetic field at the bot-
tom of these open regions is considerably larger than that of typical (equatorial)
coronal holes (McIntosh, Davey, and Hassler, 2006) where ubiquitous outflows
are readily observed in the magnetic network (De Pontieu et al., 2009; McIntosh,
Leamon & De Pontieu, in preparation) and may go some way to explaining why
some coronal dimming events rooted in very strong magnetic flux regions have
very fast CMEs that show little or no deceleration and have associated high
wind streams behind them (e.g., Neugebauer, Goldstein, and Goldstein, 1997;
Skoug et al., 2004).

Based on the analyses of De Pontieu et al. (2009), De Pontieu et al. (2007)
and McIntosh (2009) we suggest that the spicules that form the root of these
upflow regions transport mass and Alfvénic wave energy behind the CME. It is
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expected that the significant Alfvénic energy present on the spicules, and coronal
magnetic field lines, will propel the plasma outward from the Sun (e.g., Suzuki
and Inutsuka, 2006; Cranmer, van Ballegooijen, and Edgar, 2007; Verdini and
Velli, 2007). The presence of the mass and energy flux behind the CME poses an
interesting challenge for our current understanding of CMEs, and particularly
those that do not slow down from the ∼1000 km/s initial plane-of-the-sky ob-
served speeds to the ambient wind speed of a few hundred kilometers per second
through interplanetary space (e.g., Reinard and Biesecker, 2009): Does the quasi-
periodically forced stream of mass and energy in the observed upflows have a
significant impact on the momentum balance of the CME such that it would
provide a continuous “push” for the material ahead to overcome the inertia of
the plasma that the CME is propagating through?

In keeping with the tone of this article as one that is looking to future diag-
nostics of surface activity and their net impact on space weather, we estimate
that the Atmospheric Imaging Array (AIA) of the Solar Dynamics Observatory

(SDO) will have increased signal-to-noise over SECCHI/EUVI of a factor of
several. Coupled with the high image cadence (10s), multi-thermal observations,
and spatial pixels that are a factor of three smaller (∼0.6′′), we are entering a
phase of solar physics when we will be able to investigate the root energetics
of the outer solar atmosphere and the possible impact those have on associ-
ated ejecta. We anticipate that these observations can, and will, provide ideal
boundary information for the increasingly sophisticated space weather modeling
effort. In late 2012, IRIS will provide unprecidented spectra of these events in the
transition region and upper chromosphere that will complement the observations
of SDO/AIA and Hinode (if it is still operational) in such a way that we will
be able to provide even stronger observational constraints towards resolving the
puzzle of CME acceleration.

5. Conclusion

We have observed the “triggering” of high-velocity coronal outflows behind a
CME that are rooted in the field of newly open strong magnetic flux regions.
These upflows carry mass and Alfvénic wave energy outward from the Sun and, as
such, are a potential momentum source for the CME while the coronal magnetic
field is open.

We have observed a rapid switch of changes in “surface” thermodynamics
from plasma heating to plasma forcing on the open magnetic topology and the
relentless nature of the mass loading on those magnetic field lines at all phases
of the eruption. Clearly, a larger sample of spectroscopically studied CMEs
(preferably from high-cadence, full-disk spectral imaging instrumentation of the
chromosphere and corona) are needed to study the true impact of this potential
driver. While this paper is very speculative in nature, and we offer no solution to
the issue at this point (sorry), the observations presented, and results discussed,
give significant food for thought. In the near future observations such as those
discussed herein will help us ascertain if the resulting fast solar wind outflow
behind the CME impacts the kinematics of the disturbance as it travels into the
inner heliosphere.
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