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[1] Data assimilation in space weather forecasting is necessary but differs in important respects from
terrestrial weather forecasting. These differences arise in part from the relative sparsity of data in space
weather and from relatively direct driving of space weather phenomena. They present opportunities for
space weather forecasting to add new data assimilation techniques to those developed in terrestrial

weather forecasting.
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1. Data Assimilation in Meteorology

[2] “Data assimilation” refers to a technique that takes a
set of numbers representing observations of some envi-
ronmental variable and merges it in a special way with
another set of numbers of the same variable computed by
a model to obtain a new set of numbers of that variable
that represents an optimal compromise between the
observations and the model. Such techniques come
in many forms depending on the sources of data and
the model. This paper concerns peculiarities of space
weather data sources and models that make data assim-
ilation in space weather forecasting different in some
respects than in terrestrial weather forecasting, which is
not to deny that there are also important aspects in
common. The peculiarities that differentiate, at least for
the present, data assimilation in space weather forecast-
ing from terrestrial weather forecasting are fairly obvi-
ous: data sparsity, directly driven dynamics versus
instability driven, short timescales, and inherent limit
on range of forecast set by unmeasurability of crucial
parameters at the Sun compounded by intervening
turbulence versus sensitivity to initial conditions. In
some respects, space weather simulations have aspects
in common with global ocean simulations—which are
also data limited in the deep ocean—and with regional
mesoscale tropospheric forecasts, which have short time-
scales and are strongly driven by their boundary con-
ditions. These differences with global atmospheric
models used in forecasting suggest that as we proceed
to incorporate data assimilation in space weather forecast
programs we might need to do more than import and
modify techniques developed by meteorologists for
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applications in meteorology. That is, besides borrowing
techniques already developed elsewhere, we might also
need to carry out research aimed at developing techni-
ques suited specifically to the peculiarities unique to the
space weather situation. Before considering these pecu-
liarities, we take a quick look at the standard example of
data assimilation as it has been developed for applica-
tions in meteorology [e.g., Kalnay, 2003].

[3] The daily weather forecast issued by the weather
service owes its notable success in large part to data
assimilation procedures that over many decades have
evolved to a high level of sophistication. Here typically
every six hours measurements of about ten different
variables taken at 10* to 10°> observing points from over
the whole globe are quality checked, interpolated onto
the more than 10° points of a three dimensional grid
used by a numerical prediction program—few if any of
which coincide with an observing point—and combined
in a weighted average with values of the same variables
predicted at each point by the program to produce an
optimal set of values to initialize the next forecast run.
What we have just described is a complicated operation
but not necessarily a sophisticated one. The sophistica-
tion comes in optimizing the interpolation of the data
onto the computation grid and in selecting the weights in
the averages of measured and predicted quantities at
each grid point—at some places and times observations
can be trusted more than predictions and vise versa—to
minimize expected errors in the prediction. Thus much
work goes into estimating the errors in the observations
and the predictions to determine optimal weights for
each grid point. The procedure reaches its most sophis-
ticated implementation when the estimated error in the
prediction is updated at each forecast step by determin-
ing the time-varying, local sensitivity of the prediction to
random perturbations of the model-generated inputs.
Thus unstable conditions tend to decrease the weight of
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the prediction relative to the observations in regions of
instability.

2. Meteorological Model Applied to Space
Weather

[4] When meteorologists refer to data assimilation they
are likely to have in mind something like the advanced
version of it that they have developed for application
in operational numerical weather prediction, as just
described. Thus it is by comparison with this example
that we wish to discuss the role of data assimilation in
operational space weather forecasting. Also to maintain
the analogy with the terrestrial case, which incorporates
the whole globe in its computational grid, we will be
concerned primarily with the corresponding “global”
space weather system, that is, the Sun-to-Earth system.
Of course, at the solar end of the system we must draw
the line at some convenient place so as not to become
involved with forecasting solar eruptive phenomena, at
least for now. For the purpose of the present discussion
therefore we consider the Sun to be an outer boundary on
the prediction code at which values of quantities that
the code needs at each grid point must be specified by
measurements or by a separate model and not computed
as part of the prediction code. Similarly at the terrestrial
end of the space weather system we must put an inner
boundary on the prediction code at some altitude in the
atmosphere convenient for space weather applications at
which values are prescribed on the computation grid from
measurements or from another model. In this case there
are codes that could in principle extend the computational
grid into the lower atmosphere if such extension should
ever be shown to have space weather relevance.

[5] In between the outer solar boundary and the inner
terrestrial boundary a numerical code to predict space
weather would have many grid points spread over the
corona, the solar wind, the magnetosphere and the iono-
sphere/thermosphere. The question is to what extent can
we think of data assimilation in this case as a process of
periodically reinitializing the values on this array of grid
points through a weighted combination of predicted values
and measured quantities interpolated to the grid points?
Such a procedure would represent a direct carryover of
meteorological data assimilation to space weather. The
assessment that we present here is that a direct carryover
would work in some parts of the domain, but in other parts
new techniques will probably need to be developed in the
time period before sufficient data sources become available
to carry out the procedure over the whole grid.

[6] Because we are focusing here on the whole Sun-to-
Earth system and on forecasting as the aim of data assim-
ilation, we intend this article to complement a differently
focused series of pieces on data assimilation that The
CEDAR Post—newsletter of NSF’s program to foster re-
search in aeronomy—began publishing in its Spring 2005
issue. The focus of The CEDAR Post articles is more on
regional applications of data assimilation in all aspects of
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space physics and aeronomy (SPA). Given the conspicuous
role that data assimilation plays in meteorology and ocean-
ography, the series aims to further its application in SPA
generally. One thing one learns from the series is that
concepts and techniques like those developed for applica-
tions in meteorology and oceanography, when modified
appropriately, have already led to tools of great utility in
SPA. One example that stands out particularly is the
assimilative mapping of ionospheric electrodynamics
(AMIE) technique [Kamide et al., 1981; Richmond and Kamide,
1988], which has become an indispensable tool in coordi-
nated data analysis projects that involve the ionosphere.
Although AMIE’s formalism comes from the literature on
optimal estimation theory rather than the meteorological
literature, it is very similar. Another pertinent example
because of its intended application to space weather is the
Global Assimilation of Ionospheric Measurements (GAIM)
model which is being developed for operation at the U.S.
Air Force Weather Agency in two versions, one by a
consortium led by Utah State University [Schunk et al.,
2004, 2005; Scherliess et al., 2004], the other by a consortium
led jointly by the Jet Propulsion Laboratory and the Uni-
versity of Southern California [Hajj et al., 2004, Wang et al.,
2004]. The USU version is currently being implemented at
the Air Force Weather Agency. Whereas AIME finds its
main use in post hoc analyses of space weather events,
GAIM is meant for operational space weather nowcasting
and will be capable of forecasting when coupled to a code
that forecasts its magnetospheric input parameters.

[7] AMIE and GAIM deal with the ionospheric piece of
the Sun-Earth system. Their function is to make maps of
ionospheric parameters at given times—snapshots of a
changing scene—out of a combination of data and models.
They are viable because there are enough data to feed them
to produce synoptic maps with sufficient resolution and
fidelity to be of value to a user community. AMIE can
assimilate data from over 150 ground magnetometer sta-
tions, the SuperDARN radar network, and DMSP satellites
to produce maps with a resolution of 1.67° in latitude and
10° in longitude with a 1 min time cadence. The USU-GAIM
uses a network of 100 Digisondes, over 100 ground station
GPS-TEC measurements, and other sources to produce 3
dimensional maps of ionospheric parameters with variable
resolution depending on the area covered (local, regional,
or global). These many hundreds of sources of information
about ionospheric conditions set up the kind of compre-
hensive areal data coverage with which the standard data
assimilation techniques of meteorology were designed to
work. Thus AMIE and GAIM demonstrate that meteoro-
logical data assimilation techniques would carry over (in
fact, are in effect being carried over) to the ionospheric part
of a Sun-to-Earth space weather numerical prediction code.

3. Where the Meteorological Model Begins
to Fail

[s] What about the magnetospheric part? Can the me-
teorological model of data assimilation be applied here?
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We have in mind a magnetospheric prediction code like
one of the several global MHD simulation codes that
already exist or one with the addition of particle drift
physics as in the Rice Convection Model. In this case the
answer to the question is “probably not,” owing to under-
sampling of the magnetosphere. For example, one would
need to resolve the plasma sheet with in situ measure-
ments to reinitialize grid points in the plasma sheet, which
at present cannot be done. If one were to combine data
from existing geosynchronous satellites with those from
some future magnetospheric constellation mission, it
might be possible to implement a low-order form of the
standard data assimilation procedure. In the meantime,
innovation seems to be called for. Perhaps some hybrid
scheme would work in which the ionospheric boundary
condition is treated in a standard data assimilation man-
ner that combines observations from a code like AMIE or
GAIM with values predicted by the operational magneto-
spheric code, but grid points elsewhere in the magneto-
sphere would be reinitialized by a combination of
predicted values and—instead of real-time data values—
data values obtained from climatological models. By cli-
matological models we mean global empirical models
based on statistically combining observations made over
time and space but binned to represent specific space
weather conditions, for example, the Tsyganenko magnetic
field models and the plasma sheet models of Wing et al.
[2003]). The binned climatological models that are brought
into the assimilation step of real-time operations must, of
course, be appropriate to current weather conditions indi-
cated, for example, by solar wind measurements (including
IMF), geomagnetic disturbance indices, and as to the plasma
sheet, perhaps also by geosynchronous measurements. Sub-
storms, which are not well represented in climatological
models, would cause a problem in this scheme, but the
problem might be handled, for example, by reducing the
relative weight of climatological values when a substorm
materializes in the prediction code. In any case, the sparse
data problem that applies to the magnetosphere illustrates
the need to innovate outside of standard data assimilation
techniques to optimize the use of data assimilation in an
operational space weather prediction code.

[¢] Why should we bother to carry the discussion be-
yond the magnetosphere? After all, today’s space weather
user groups are interested in ground induced currents,
ground magnetic disturbances, ionospheric disturbances,
atmospheric drag, and the radiation environment of sat-
ellites, all of which occur within the magnetosphere. We
ask the question rhetorically to point out another differ-
ence between terrestrial weather prediction and space
weather prediction. Terrestrial weather is self-generated
in the sense that the energy input from the Sun is constant
but the atmospheric response to it is variable because of
barotropic, baroclinic, and other instabilities. In contrast,
space weather in the magnetosphere results mainly from
variable solar wind conditions. Even the substorm—the
magnetosphere’s prime candidate for a process resulting
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from an inherent instability—is in most cases triggered by
changes in solar wind conditions. This difference between
the origins of terrestrial and magnetospheric weather
means that whereas the dynamics that underlie terrestrial
weather prediction is restricted to the atmosphere itself,
the dynamics that underlie magnetospheric weather pre-
diction must include the solar wind. To describe this
fundamental distinction as it applies to geophysical sys-
tems, we suggest the terms persistence and compliance.
Persistence means that a combination of the current state
plus our knowledge of physics can adequately describe
future states, regardless of how boundary conditions
change. Compliance means that the system responds
rapidly to changing boundary conditions. The terrestrial
weather system is persistent; the magnetospheric, compli-
ant. Data assimilation in persistent systems is confined to
the system itself, whereas in compliant systems it must be
extended to the external medium to which the system is
compliant—the solar wind in this case.

[10] Data assimilation is more important in numerical
modeling of persistent systems than in compliant systems.
In fact, in nonperiodic systems like tropospheric weather,
data assimilation is indispensable because such systems
exhibit deterministic chaos. Without repeated assimilation
steps, the predicted state would wander ever farther from
the actual state. On the other hand, in numerical modeling
of compliant systems, data assimilation is not as impor-
tant, since compliant systems tend to be directly driven
from boundary conditions. Their tight coupling to the
boundary conditions holds the predicted state close to
the actual state. As to the magnetosphere, our present
understanding would suggest that, except for the expan-
sion and recovery phases of substorms, solar wind bound-
ary conditions are for the most part sufficient to
characterize the state of magnetospheric weather.

[11] A further implication of the distinction between
persistent and compliant systems is that the time into the
future to which a forecast can be made in persistent systems
depends on how well the data assimilation procedure and
the prediction code can approach the inherent limit set by
deterministic chaos. However, in compliant systems it is set
by the predictability of the driving boundary conditions.
This brings us to the solar wind and the role of data
assimilation in numerical solar wind codes.

[12] Stand-alone magnetospheric and ionospheric codes
of the type available to predict space weather are now
driven by real-time data taken at the L1 point. This sets an
upper limit on the forecast time of usually less than 1 hour,
and part of this time must be used in the operational
forecast procedure. We have here a practical difference
between terrestrial and space weather forecasting—the
very short time in the space weather case in which to
prepare and release a forecast based on a numerical
prediction code. The situation could improve markedly
when the STEREO mission places an observing platform
upstream from Earth in a corotational sense giving lead
times from hours to days as the spacecraft recedes from
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Earth. However, the improvement will be temporary since
the correlation between conditions seen by the spacecraft
and by Earth will degrade as they separate.

[13] To move permanently beyond the ~1 hour L1
forecast range, one needs a solar wind prediction code
that can in principle extend the forecast range to roughly
2 to 4 days. Again we have in mind a physics-based,
numerical prediction code. In situ data at a single L1 or
even a STEREO observation site cannot be combined in a
proper data assimilation step with predicted values from a
solar wind code to reinitialize the values over the code’s
grid. However, it is precisely this kind of pan grid
data assimilation that one needs if observed solar wind
quantities are to be used to make an improvement in 2- to
4-day solar wind forecasts. How might this be done?

4. Space Weather Modifications of the
Meteorological Model

[14] At present solar magnetograms are the primary
sources of observational data used to drive solar wind
codes [e.g., Odstrcil et al., 2004, 2005]. These feed semiem-
pirical algorithms that compute solar wind speed, density
and temperature and IMF polarity at a spherical surface at
a heliocentric distance beyond which the wind goes
supersonic [Arge and Pizzo, 2000; Riley et al., 2001]. This
allows the solar wind code to treat data input as a time
variable boundary condition. Once values of the depen-
dent variables have been specified on the inner boundary
(and after a startup procedure to initialize its grid points),
the code predicts the variables everywhere else for as long
as it receives data at its boundary grid points. Efforts to
improve agreement between predicted values and values
observed at 1 AU focus on the algorithm that turns solar
magnetograms into boundary conditions for the code.
However, no data assimilation steps operate to nudge
computed values toward observed values at grid points
between the inner boundary and 1 AU. What solar wind
observations are there between the inner boundary and
1 AU that could be so used?

[15] Interplanetary scintillation data (IPS) and Thomp-
son scattering in the extended solar corona measured by
coronagraphs on SOHO and SMIE are possible answers to
the question. Use of these sources to drive a data assim-
ilation scheme for a simple kinematic solar wind model
has already been described by Hick and Jackson [2004]. In
essence, one uses values of solar wind speed and density
given by the model to predict the signals that these instru-
ments should measure. Then one adjusts the code’s bound-
ary conditions to minimize the disagreement between
predicted and observed signals. This technique could be
applied as well to MHD solar wind codes. Then the data
assimilation effort would determine the values on the
boundary grid by optimally combining values given by
the algorithm that turns solar magnetograms into bound-
ary values and by the algorithm that adjusts boundary
values to minimize the disagreement between predicted
and observed IPS and coronagraph signals. This is a novel
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space weather kind of data assimilation procedure which,
to develop, would require a dedicated research effort.

[16] A final instance of data assimilation unique to the
space weather situation deserves mention. As is well
known, the single most important variable that deter-
mines magnetospheric weather (for example the value of
the Ap index—a standard space weather product) is the
north-south (z) component of the interplanetary magnetic
field (IMF B.). However, by current techniques, except for
the magnetic field inside of a CME which can in principle
be inferred from solar magnetograms [Bothmer and Rust,
1997], IMF B, is unmeasurable as an input to a solar wind
code. Moreover, turbulence in the solar wind causes IMF
B. to change sign on average every 10 min or so. Thus
between the Sun and the Earth, IMF B, typically changes
sign every 1.6 x 10> AU on average, which is subgrid
scale in any practicable solar wind code. This means that
except for the large-scale regularities imposed on IMF B,
by the Parker spiral during equinoxes (the Russell-
McPherron effect) and the magnetic field within an ICME
which can hold its z orientation in transit [Zhao and
Hoeksema, 1997], IMF B, is inherently unpredictable. To
address the problem that this condition poses to everyday
space weather prediction, McPherron and Siscoe [2004]
introduced the concept of climatological air mass analysis.
The solar wind exhibits characteristic modes of behavior
(fast streams, slow streams, CIRs, CMEjs, etc.) which might
be called solar wind air masses by analogy to atmospheric
air masses in meteorology. The point is that if one can tell
in advance what type of air mass the Earth will be in, one
can predict in a statistical sense the climatological con-
ditions that go along with such air masses, including the
statistics of IMF B,. The data assimilation implication here
is that a solar wind code can predict 2 to 4 days in advance
the type of solar wind air mass. Then an artificial IMF
waveform can be generated from the statistical properties
of the IMF appropriate to the predicted air mass. This
artificial IMF combined with the solar wind parameters
predicted from the solar wind code give boundary con-
ditions that a magnetospheric or ionospheric code can use
to generate ensemble examples of the type of space
weather that will ensue when the predicted air mass
arrives. These would then allow statistical forecasts to be
made of space weather products such as the Ap index.

5. Parameter Space for Comparing Data
Assimilation Requirements

[17] Figure 1 summarizes the points made in this dis-
cussion in the form of a plot that shows qualitatively the
location of various weather domains relative to the avail-
ability of data (the ordinate) and the sensitivity to bound-
ary conditions (the abscissa) for a presumed 24 hour
weather forecast by a physics-based numerical prediction
code. The troposphere is represented by the box in the
upper left. The other boxes refer to space weather
domains. Compared to these, the troposphere is highest
in data availability and lowest in sensitivity to boundary
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Figure 1. Approximate locations of various weather
domains relative to data availability and sensitivity to
boundary conditions as they apply to making 24 hour
weather forecasts. The domains are also projected
vertically onto the diagonal line, which qualitatively
indicates the relative value of data assimilation in
improving forecast skill.

conditions. Next down in data availability is the iono-
sphere/thermosphere box. Of the space weather domains,
it is highest in data availability because of programs like
AMIE and GAIM. On the abscissa, we put it in the middle
between persistent and compliant since the thermosphere
gives the domain 24 hour persistence but the ionosphere
responds to magnetospheric inputs which are compliant.
Under ionosphere/thermosphere in data availability
comes magnetospheric electric field. It shares the data
sources of AMIE and GAIM but lacks sources for field-
aligned potential drops and induction electric fields. Being
magnetospheric, it lies at the compliant end of the sensi-
tivity axis. Under it comes solar wind plasma and IMF B,,
which has IPS and coronagraph measurements for solar
wind data sources and solar magnetograms for sector
polarity (IMF B,)—fewer than AMIE and GAIM but still
highly usable. We put it on the compliant side of the
sensitivity axis because except for stream interactions and
shock compression ahead of CMEs, boundary conditions
govern most of solar wind dynamics. Under solar wind
plasma comes the box for magnetospheric magnetic field
and plasma. Here data availability is so low that the box lies
in the domain of climatological models for the purpose of
data assimilation. Being magnetospheric, it lies at the
compliant end of the sensitivity axis. Finally at the bottom
of the plot comes IMF B., for which except for the Russell-
McPherron effect and ICMEs there are no data. It lies near
the middle of the persistent/compliant axis since boundary
conditions are needed to predict the solar wind air mass,
but given this, the statistical properties are persistent.
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[18] Most relevant to this discussion is the diagonal line
labeled “Data Assimilation Benefit,” which attempts to
indicate in a very qualitative way the benefit that incorpo-
rating some data assimilation scheme, presumably of the
meteorological kind, would make in increasing forecast skill.
The point it makes is simply this, the closer you are to the
persistent end of the sensitivity axis the greater the benefit of
data assimilation, and the closer you are to the compliant
end, the less the benefit. For example, for a 24 hour forecast
as illustrated here, there is virtually no persistence in mag-
netospheric quantities, so assimilating magnetospheric
quantities into a magnetospheric code would not increase
24 hour forecast skill. For forecasts of less than 24 hours, all
boxes shift to the left, and for a ~1 hour or less forecast
magnetospheric data assimilation could increase forecast
skill. However, for a 1 day forecast, all persistence in mag-
netospheric weather comes from the solar wind and the IMF
sector structure. These can have autocorrelation timescales
of the order of a day, which can give value to a persistence
forecast of magnetospheric quantities. However, the real
benefit of data assimilation in increasing skill in magneto-
spheric quantities lies in its application to the solar wind. Of
course the case for the value of data assimilation in iono-
sphere/thermosphere forecasts has already been made, and
its implementation is well underway.

6. Conclusions

[19] Space weather has peculiarities that call for devel-
oping new kinds of data assimilation procedures (in
addition to importing already developed procedures) for
the purpose of forecasting. One such peculiarity is data
sparsity (magnetospheric plasma and magnetic field and
IMF B,), which might require climatological forms of data
assimilation and so, in the case of IMF B,, the development
of the appropriate climatologies. Another peculiarity is a
strong tendency of space weather domains to exhibit
compliant dynamics. This emphasizes the importance of
combining or coupling models so as to reduce the uncer-
tainty associated with the future forcing by external
boundary conditions. Future applications might entail a
hybrid kind of data assimilation where the process of
synthesizing measured values and predicted values in an
optimal way takes place on boundary grid points, as in the
magnetospheric electric field and the solar wind.
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