

radial acceleration=0.630E-02 km/sec**2

INPUT:

		error in	error in	
year doy	time	radii radius	angle angle	datatype
1988 239	15:12: 0	2.10 +/- 0.10	314.0 +/- 0.5	SMM
1988 239	15:28:31	2.40 +/- 0.10	314.0 +/- 0.5	SMM
1988 239	15:36:47	2.70 +/- 0.10	314.0 +/- 0.5	SMM
1988 239	16: 1:32	2.90 +/- 0.10	314.0 +/- 0.5	SMM
1988 239	16:54:11	4.00 +/- 0.10	314.0 +/- 1.0	SMM

Structure being measured:

Top of Narrow, Sharp Loop

OUTPUT:

START TIME:

Event began at t = 0 + -0.499E + 02 + /- 0.607E + 00 [minutes] In more convenient units: Event began at DOY 239 14:12 +/- 0.607E + 00 [minutes]

Origin defined at DOY239 15: 0

RADIAL INFORMATION:

RADIAL VELOCITY = 210, +/- 13, km/sec

The computed RADIAL coefficients and errors FROM NLLST2 are:

The computed ERRORS in coefficients [BEVINGTON] are:

error in c(1)= 0.80968E-01 [radii] see Bevington pg. 114 error in c(2)= 0.13088E-02 [radii/min] see Bevington pg. 114 ANGULAR INFORMATION:

ANGULAR VELOCITY = 0.0000E+00 +/- 0.0000E+00[radians/sec]

The computed ANGULAR coefficients and errors FROM NLLST2 are:

a(1) = 314. +/- 0. [degrees]

a(2) = 0.000E+00 +/- 0.000E+00 [degrees/min]

a(2) = 0.000E+00 +/- 0.000E+00[rad/sec]

a(3) = 0.000E+00 +/- 0.000E+00 [degrees/min**2]

a(3) = 0.000E+00 +/- 0.000E+00[rad/sec**2]

THE TANGENTIAL AND TOTAL VELOCITIES AT EACH DATA POINT ARE:

The TANGENTIAL velocity at 15:12 = 0. km/sec

The TOTAL velocity at 15:12 = 210. km/sec

The TANGENTIAL velocity at 15:28 = 0. km/sec

The TOTAL velocity at 15:28 = 210. km/sec

The TANGENTIAL velocity at 15:36 = 0. km/sec

The TOTAL velocity at 15:36 = 210. km/sec

The TANGENTIAL velocity at 16: 1 = 0. km/sec

The TOTAL velocity at 16: 1 = 210. km/sec

The TANGENTIAL velocity at 16:54 = 0. km/sec

The TOTAL velocity at 16:54 = 210, km/sec

The following info is for estimating goodness of the fit

Fit is ok [ier=1]

Standard Deviation in the height = 0.73

Standard Deviation in start time measurement = 0.356E+02

Error in time = 0.99623E+01 using best fit method

See Taylor Error Analysis [Univ of Colorado] pg.78

Value of reduced Chi Squared returned from nllst2 = 0.813E-02

Reduced Chi Squared = 0.373E-01

Chi Squared = 0.112E+00

The probability for exceeding chi square = 0.999E+00

The correlation coefficient = 0.992E+00

The probability that no LINEAR correlation exists between the variables = 0.8177E-03

SEE BEVINGTON "Data Reduction and Error Analysis" [1969]

****** INPUT: *****

		error in	error in	
year doy	time	radii radius	angle angle	datatype
1988 239	15:12: 0	2.10 +/- 0.10	314.0 +/- 0.5	SMM
1988 239	15:28:31	2.40 +/- 0.10	314.0 +/- 0.5	SMM
1988 239	15:36:47	2.70 +/- 0.10	314.0 +/- 0.5	SMM
1988 239	16: 1:32	2.90 +/- 0.10	314.0 +/- 0.5	SMM
1988 239	16:54:11	4.00 +/- 0.10	314.0 +/- 1.0	SMM

Structure being measured: Top of Narrow, Sharp Loop

OUTPUT:

START TIME:

Event began at t = 0 + -0.635E + 02 + -0.686E + 02 [minutes] In more convenient units: Event began at DOY 239 13:58 + -0.686E + 02 [minutes]

Origin defined at DOY239 15: 0

RADIAL INFORMATION:

RADIAL ACCELERATION = 0.630E-02 +/- 0.171E-01 km/sec**2

The computed RADIAL coefficients and errors FROM NLLST2 are:

```
c(1) = 0.195E+01 +/- 0.147E+00 [solar radii]

c(2) = 0.160E-01 +/- 0.593E-02 [radii/min]

c(2) = 0.185E+03 +/- 0.688E+02 [km/sec]

c(3) = 0.163E-04 +/- 0.443E-04 [radii/min**2]

c(3) = 0.630E-02 +/- 0.171E-01 [km/sec**2]
```

The computed ERRORS in coefficients [BEVINGTON] are:

```
Approximate error in c(1) = 0.17989E+00 [radii] Bevington pg 154 (8-30)

Exact error in c(1) = 0.53176E-01 [radii] Bevington pg 154 (8-28)

Approximate error in c(2) = 0.72680E-02 [radii/min] Bevington pg 154 (8-30)

Exact error in c(2) = 0.24309E-02 [radii/min] Bevington pg 154 (8-28)

Approximate error in c(3) = 0.54255E-04 [radii/min**] Bevington pg 154 (8-30)

Exact error in c(3) = 0.17392E-04 [radii/min**] Bevington pg 154 (8-28)
```

ANGULAR INFORMATION:

ANGULAR ACCELERATION= 0.0000E+00 +/- 0.0000E+00[radians/sec**2]

The computed ANGULAR coefficients and errors FROM NLLST2 are:

```
a(1) = 314. +/- 0. [degrees]
```

a(2) = 0.000E+00 +/- 0.000E+00 [degrees/min]

a(2) = 0.000E+00 +/- 0.000E+00[rad/sec]

a(3) = 0.000E + 00 + -0.000E + 00 [degrees/min**2]

a(3) = 0.000E+00 +/- 0.000E+00 [rad/sec**2]

THE TANGENTIAL AND TOTAL VELOCITIES AT EACH DATA POINT ARE:

The TANGENTIAL velocity at 15:12 = 0. km/sec

The TOTAL velocity at 15:12 = 190. km/sec

The TANGENTIAL velocity at 15:28 = 0. km/sec

The TOTAL velocity at 15:28 = 196. km/sec

The TANGENTIAL velocity at 15:36 = 0. km/sec

The TOTAL velocity at 15:36 = 199. km/sec

The TANGENTIAL velocity at 16: 1 = 0. km/sec

The TOTAL velocity at 16: 1 = 209. km/sec

The TANGENTIAL velocity at 16:54 = 0. km/sec

The TOTAL velocity at 16:54 = 228. km/sec

Fit is ok [ier=1]

Standard Deviation in the height = 0.73
Standard Deviation in start time measurement = 0.356E+02
Value of reduced Chi Squared returned from nllst2 = 0.104E-01
Reduced Chi Squared = 0.493E-01
Chi Squared = 0.986E-01
The probability for exceeding chi square = 0.990E+00

For a second order fit 3 correlation coefficients are given:

(Using equation of motion: $r = a + bt + at^{**}2$)

The correlation between the data and the term linear in time = 0.9923E+00

The correlation between the data and the time**2 term = 0.9744E+00

0The correlation between the data and the complete equation of motion = 0.9852E+00

SEE BEVINGTON "Data Reduction and Error Analysis" [1969]