

SMM C/P 1988 D0Y281 50 +/- 0 degrees

tstart=DOY281 19:17 from derivative=Ø

Event begins at 1.85 Solar Radii

radial acceleration= Ø.0127 +/- Ø.0014 [km/sec**2]

******** This is a 1 order run

INPUT:

			error in	error in		
year doy				angle	angle	datatype
1988 281	20:23:54	2.00	+/- 0.10	50.0	+/- 0.5	SMM
1988 281	20:56:56	2.20	+/- 0.20	50.0	+/- 0.5	SMM
1988 281	21:57:49	2.70	+/- 0.15	50.0	+/- 0.5	SMM
1988 281	22:30:51	3.10	+/- 0.15	50.0	+/- 1.0	SMM

Structure being measured:

Top of Mound

OUTPUT:

START TIME:

Event began at t = 0 + -0.936E + 02 + /- 0.337E + 01 [minutes] In more convenient units: Event began at DOY 281 18:28 +/- 0.337E+01 [minutes]

Origin defined at DOY281 20: 0

RADIAL INFORMATION:

RADIAL VELOCITY = 97. +/-6. km/sec

The computed RADIAL coefficients and errors FROM NLLST2 are:

```
c(1) =
        0.178E+01 +/-
                        0.457E-01 [solar radii]
c(2) =
        0.836E-02 +/-
                        0.503E-03 [radii/min]
c(2) =
        0.969E+02 +/-
```

0.584E+01 [km/sec] c(3) =0.000E+00 +/-0.000E+00 [radii/min**2]

c(3) =0.000E+00 +/-0.000E+00 [km/sec**2]

The computed ERRORS in coefficients [BEVINGTON] are:

error in c(1)= 0.76217E-01 [radii] see Bevington pg. 114 error in c(2)= 0.75792E-03 [radii/min] see Bevington pg. 114 ANGULAR INFORMATION:

ANGULAR VELOCITY = 0.0000E+00+00 [radians/sec]

The computed ANGULAR coefficients and errors FROM NLLST2 are:

```
a(1) = 50. +/- 0. [degrees]
```

a(2) = 0.000E+00 +/- 0.000E+00 [degrees/min]

a(2) = 0.000E+00 +/- 0.000E+00 [rad/sec]

a(3) = 0.000E+00 +/- 0.000E+00 [degrees/min**2]

a(3) = 0.000E+00 +/- 0.000E+00 [rad/sec**2]

THE TANGENTIAL AND TOTAL VELOCITIES AT EACH DATA POINT ARE:

The TANGENTIAL velocity at 20:23 = 0. km/sec

The TOTAL velocity at 20:23 = 97. km/sec

The TANGENTIAL velocity at 20:56 = 0. km/sec

The TOTAL velocity at 20:56 = 97. km/sec

The TANGENTIAL velocity at 21:57 = 0, km/sec

The TOTAL velocity at 21:57 = 97. km/sec

The TANGENTIAL velocity at 22:30 = 0. km/sec

The TOTAL velocity at 22:30 = 97. km/sec

The following info is for estimating goodness of the fit

Fit is ok [ier=1]

Standard Deviation in the height = 0.50

Standard Deviation in start time measurement = 0.498E+02

Error in time = 0.12771E+02 using best fit method

See Taylor Error Analysis [Univ of Colorado] pg.78

Value of reduced Chi Squared returned from nllst2 = 0.287E-02

Reduced Chi Squared = 0.167E-01

Chi Squared = 0.335E-01

The probability for exceeding chi square = 0.997E+00

The correlation coefficient = 0.993E+00

The probability that no LINEAR correlation exists between the variables = 0.6991E-02

SEE BEVINGTON "Data Reduction and Error Analysis" [1969]

			error in	error in		
year doy	time	radii	radius	angle	angle	datatype
1988 281	20:23:54	2.00	+/- 0.10	50.0	+/- 0.5	SMM
1988 281	20:56:56	2.20	+/- 0.20	50.0	+/- 0.5	SMM
1988 281	21:57:49	2.70	+/- 0.15	50.0	+/- 0.5	SMM
1988 281	22:30:51	3.10	+/- 0.15	50.0	+/- 1.0	SMM

Structure being measured:

Top of Mound

OUTPUT:

START TIME:

tstart=DOY281 19:17 from derivative = 0 Event begins at 1.85 Solar Radii Origin defined at DOY281 20: 0

RADIAL INFORMATION:

RADIAL ACCELERATION = 0.127E-01 +/- 0.140E-02 km/sec**2

The computed RADIAL coefficients and errors FROM NLLST2 are:

```
c(1) = 0.191E+01 +/- 0.169E-01 [solar radii]

c(2) = 0.286E-02 +/- 0.611E-03 [radii/min]

c(2) = 0.331E+02 +/- 0.709E+01 [km/sec]

c(3) = 0.330E-04 +/- 0.362E-05 [radii/min**2]

c(3) = 0.127E-01 +/- 0.140E-02 [km/sec**2]
```

The computed ERRORS in coefficients [BEVINGTON] are:

```
Approximate error in c(1) = 0.36279E-01 [radii] Bevington pg 154 (8-30)

Exact error in c(1) = 0.97511E-02 [radii] Bevington pg 154 (8-28)

Approximate error in c(2) = 0.10673E-02 [radii/min] Bevington pg 154 (8-30)

Exact error in c(2) = 0.45322E-03 [radii/min] Bevington pg 154 (8-28)

Approximate error in c(3) = 0.60125E-05 [radii/min**] Bevington pg 154 (8-30)

Exact error in c(3) = 0.26396E-05 [radii/min**] Bevington pg 154 (8-28)
```

ANGULAR INFORMATION:

ANGULAR ACCELERATION= 0.0000E+00 +/- 0.0000E+00[radians/sec**2]

The computed ANGULAR coefficients and errors FROM NLLST2 are:

```
a(1) = 50. +/- 0. [degrees]
```

a(2) = 0.000E+00 +/- 0.000E+00 [degrees/min]

a(2) = 0.000E+00 +/- 0.000E+00[rad/sec]

a(3) = 0.000E+00 +/- 0.000E+00 [degrees/min**2]

a(3) = 0.000E+00 +/- 0.000E+00 [rad/sec**2]

THE TANGENTIAL AND TOTAL VELOCITIES AT EACH DATA POINT ARE:

The TANGENTIAL velocity at 20:23 = 0. km/sec

The TOTAL velocity at 20:23 = 51, km/sec

The TANGENTIAL velocity at 20:56 = 0. km/sec

The TOTAL velocity at 20:56 = 77. km/sec

The TANGENTIAL velocity at 21:57 = 0. km/sec

The TOTAL velocity at 21:57 = 123. km/sec

The TANGENTIAL velocity at 22:30 = 0. km/sec

The TOTAL velocity at 22:30 = 148. km/sec

Fit is ok [ier=1]

Standard Deviation in the height = 0.50

Standard Deviation in start time measurement = 0.498E+02

Value of reduced Chi Squared returned from nllst2 = 0.101E-03

Reduced Chi Squared = 0.807E-03

Chi Squared = 0.807E-03

The probability for exceeding chi square = 0.992E+00

For a second order fit 3 correlation coefficients are given:

(Using equation of motion: $r = a + bt + at^{**}2$)

The correlation between the data and the term linear in time = 0.1098E+01

The correlation between the data and the time**2 term = 0.1037E+01

OThe correlation between the data and the complete equation of motion = 0.9986E+00

SEE BEVINGTON "Data Reduction and Error Analysis" [1969]