

tstart=DOY291 5:24 from derivative=0

Event begins at 2.06 Solar Radii
radial acceleration= 0.0495 +/- 0.0075 [km/sec**2]

SMM C/P 1988 DOY291 77 +/- Ø degrees

****** INPUT: *****

		error in	error in	
year doy	time	radii radius	angle angle	datatype
1988 291	5:32:30	2.10 +/- 0.10	77.0 +/- 0.5	SMM
1988 291	5:40:44	2.10 +/- 0.15	77.0 +/- 0.5	SMM
1988 291	5:49: 4	2.10 +/- 0.10	77.0 +/- 0.5	SMM
1988 291	5:57:25	2.15 +/- 0.10	77.0 +/- 0.5	SMM
1988 291	6: 5:47	2.35 +/- 0.10	77.0 +/- 0.5	SMM
1988 291	7:48:12	4.70 +/- 0.30	77.0 +/- 1.0	SMM

Structure being measured:

Top of Loop

OUTPUT:

START TIME:

Event began at t = 0 + -0.194E + 02 + /- 0.215E + 01 [minutes] In more convenient units: Event began at DOY 291 4:41 +/- 0.215E + 01 [minutes]

Origin defined at DOY291 5: 0

RADIAL INFORMATION:

RADIAL VELOCITY = 197. +/- 38. km/sec

The computed RADIAL coefficients and errors FROM NLLST2 are:

```
\begin{array}{lllll} c(1) = & 0.133E+01 +/- & 0.189E+00 \text{ [solar radii]} \\ c(2) = & 0.170E-01 +/- & 0.329E-02 \text{ [radii/min]} \\ c(2) = & 0.197E+03 +/- & 0.382E+02 \text{ [km/sec]} \\ c(3) = & 0.000E+00 +/- & 0.000E+00 \text{ [radii/min**2]} \\ c(3) = & 0.000E+00 +/- & 0.000E+00 \text{ [km/sec**2]} \\ \end{array}
```

The computed ERRORS in coefficients [BEVINGTON] are:

```
error in c(1)= 0.22062E+00 [radii] see Bevington pg. 114
error in c(2)= 0.26676E-02 [radii/min] see Bevington pg. 114
ANGULAR INFORMATION:
```

ANGULAR VELOCITY = 0.0000E+00+00 (radians/sec)

The computed ANGULAR coefficients and errors FROM NLLST2 are:

```
a(1) = 77. +/- 0. [degrees]
                        0.000E+00 [degrees/min]
a(2) = 0.000E + 00 + / -
a(2) =
        0.000E+00 +/-
                        0.000E+00 [rad/sec]
a(3) =
        0.000E+00 +/-
                        0.000E+00 [degrees/min**2]
a(3) =
        0.000E+00 +/-
                        0.000E+00 [rad/sec**2]
THE TANGENTIAL AND TOTAL VELOCITIES AT EACH DATA POINT ARE:
The TANGENTIAL velocity at 5:32 =
                                     0. km/sec
The TOTAL velocity at 5:32 = 197. km/sec
```

The TANGENTIAL velocity at 5:40 = 0. km/sec

The TOTAL velocity at 5:40 = 197. km/sec

The TANGENTIAL velocity at 5:49 = 0. km/sec

The TOTAL velocity at 5:49 = 197, km/sec

The TANGENTIAL velocity at 5:57 = 0. km/sec The TOTAL velocity at 5:57 = 197. km/sec

The TANGENTIAL velocity at 6: 5 = 0. km/sec The TOTAL velocity at 6: 5 = 197. km/sec

The TANGENTIAL volcoity of 7:40

The TANGENTIAL velocity at 7:48 = 0. km/sec The TOTAL velocity at 7:48 = 197. km/sec

Fit is ok [ier=1]

Standard Deviation in the height = 1.04
Standard Deviation in start time measurement = 0.457E+02
Error in time = 0.35145E+02 using best fit method
See Taylor Error Analysis [Univ of Colorado] pg.78

Value of reduced Chi Squared returned from nllst2 = 0.308E-01 Reduced Chi Squared = 0.451E+00 Chi Squared = 0.180E+01 The probability for exceeding chi square = 0.998E+00

The correlation coefficient = 0.985E+00

The probability that no LINEAR correlation exists between the variables = 0.3226E-03

SEE BEVINGTON "Data Reduction and Error Analysis" [1969]

****** INPUT: *****

		error in	error in	
year doy	time	radii radius	angle angle	datatype
1988 291	5:32:30	2.10 +/- 0.10	77.0 +/- 0.5	SMM
1988 291	5:40:44	2.10 +/- 0.15	77.0 +/- 0.5	SMM
1988 291	5:49: 4	2.10 +/- 0.10	77.0 +/- 0.5	SMM
1988 291	5:57:25	2.15 +/- 0.10	77.0 +/- 0.5	SMM
1988 291	6: 5:47	2.35 +/- 0.10	77.0 +/- 0.5	SMM
1988 291	7:48:12	4.70 +/- 0.30	77.0 +/- 1.0	SMM

Structure being measured:

Top of Loop

OUTPUT:

START TIME:

tstart=DOY291 5:24 from derivative = 0 Event begins at 2.06 Solar Radii Origin defined at DOY291 5:0

RADIAL INFORMATION:

RADIAL ACCELERATION = 0.495E-01 +/- 0.751E-02 km/sec**2

The computed RADIAL coefficients and errors FROM NLLST2 are:

```
c(1) = 0.214E+01 +/- 0.137E+00 [solar radii]

c(2) = -0.623E-02 +/- 0.368E-02 [radii/min]

c(2) = -0.723E+02 +/- 0.427E+02 [km/sec]

c(3) = 0.128E-03 +/- 0.194E-04 [radii/min**2]

c(3) = 0.495E-01 +/- 0.751E-02 [km/sec**2]
```

The computed ERRORS in coefficients [BEVINGTON] are:

```
Approximate error in c(1) = 0.15170E+00 [radii] Bevington pg 154 (8-30)

Exact error in c(1) = 0.57143E-01 [radii] Bevington pg 154 (8-28)

Approximate error in c(2) = 0.40407E-02 [radii/min] Bevington pg 154 (8-30)

Exact error in c(2) = 0.17419E-02 [radii/min] Bevington pg 154 (8-28)

Approximate error in c(3) = 0.19119E-04 [radii/min**] Bevington pg 154 (8-30)

Exact error in c(3) = 0.83523E-05 [radii/min**] Bevington pg 154 (8-28)
```

ANGULAR INFORMATION:

ANGULAR ACCELERATION= 0.0000E+00 +/- 0.0000E+00[radians/sec**2]

The computed ANGULAR coefficients and errors FROM NLLST2 are:

a(1) = 77. +/- 0. [degrees]

a(2) = 0.000E+00 +/- 0.000E+00 [degrees/min]

a(2) = 0.000E+00 +/- 0.000E+00[rad/sec]

a(3) = 0.000E+00 +/- 0.000E+00 [degrees/min**2]

a(3) = 0.000E+00 +/- 0.000E+00[rad/sec**2]

THE TANGENTIAL AND TOTAL VELOCITIES AT EACH DATA POINT ARE:

The TANGENTIAL velocity at 5:32 = 0. km/sec

The TOTAL velocity at 5:32 = 24. km/sec

The TANGENTIAL velocity at 5:40 = 0, km/sec

The TOTAL velocity at 5:40 = 49. km/sec

The TANGENTIAL velocity at 5:49 = 0. km/sec

The TOTAL velocity at 5:49 = 74. km/sec

The TANGENTIAL velocity at 5:57 = 0. km/sec

The TOTAL velocity at 5:57 = 98. km/sec

The TANGENTIAL velocity at 6:5 = 0, km/sec

The TOTAL velocity at 6: 5 = 123. km/sec

The TANGENTIAL velocity at $\sqrt{.48} = 0$ km/sec

The TOTAL velocity at 7:48/= 428. km/sec

The following info is for estimating goodness of the fit

Fit is ok [ier=1]

Standard Deviation in the height = 1.04

Standard Deviation in start time measurement = 0.457E+02

Value of reduced Chi Squared returned from nllst2 = 0.324E-02

Reduced Chi Squared = 0.136E-01

Chi Squared = 0.409E-01

The probability for exceeding chi square = 0.100E+01

For a second order fit 3 correlation coefficients are given:

(Using equation of motion: $r = a + bt + at^{**}2$)

The correlation between the data and the term linear in time = 0.5588E+00

The correlation between the data and the time**2 term = 0.5603E+00

OThe correlation between the data and the complete equation of motion = 0.9948E+00

SEE BEVINGTON "Data Reduction and Error Analysis" [1969]