

radial acceleration= 0.0222 +/- 0.0051 [km/sec**2]

****** INPUT:

			error in	error in		
	time 1			angle	angle	datatype
1988 325	10:43:38	2.90	+/- 0.15	60.0	+/- 0.5	SMM
	10:51:52			60.0	+/- 0.5	SMM
1988 325	11:16:40	3.10	+/- 0.15	60.0	+/- 1.0	SMM
1988 325	12:17:25	3.80	+/- 0.15	60.0	+/- 1.0	SMM

Structure being measured:

Top of Cavity

OUTPUT:

START TIME:

Event began at t = 0 + -0.140E + 03 + -0.393E + 01 [minutes] In more convenient units: Event began at DOY 325 7:40 + -0.393E + 01 [minutes]

Origin defined at DOY325 10: 0

RADIAL INFORMATION:

RADIAL VELOCITY = 116. +/- 9. km/sec

The computed RADIAL coefficients and errors FROM NLLST2 are:

```
\begin{array}{llll} c(1) = & 0.240E + 01 + / - & 0.657E - 01 \text{ [solar radii]} \\ c(2) = & 0.999E - 02 + / - & 0.766E - 03 \text{ [radii/min]} \\ c(2) = & 0.116E + 03 + / - & 0.889E + 01 \text{ [km/sec]} \\ c(3) = & 0.000E + 00 + / - & 0.000E + 00 \text{ [radii/min**2]} \\ c(3) = & 0.000E + 00 + / - & 0.000E + 00 \text{ [km/sec**2]} \\ \end{array}
```

The computed ERRORS in coefficients [BEVINGTON] are:

```
error in c(1)= 0.80421E-01 [radii] see Bevington pg. 114
error in c(2)= 0.93876E-03 [radii/min] see Bevington pg. 114
ANGULAR INFORMATION:
```

ANGULAR VELOCITY = 0.0000E+00+00+00[radians/sec]

The computed ANGULAR coefficients and errors FROM NLLST2 are:

```
a(1) = 60. +/- 0. [degrees]
```

a(2) = 0.000E+00 +/- 0.000E+00 [degrees/min]

a(2) = 0.000E+00 +/- 0.000E+00[rad/sec]

a(3) = 0.000E+00 +/- 0.000E+00 [degrees/min**2]

a(3) = 0.000E+00 +/- 0.000E+00[rad/sec**2]

THE TANGENTIAL AND TOTAL VELOCITIES AT EACH DATA POINT ARE:

The TANGENTIAL velocity at 10:43 = 0. km/sec

The TOTAL velocity at 10:43 = 116. km/sec

The TANGENTIAL velocity at 10:51 = 0. km/sec

The TOTAL velocity at 10:51 = 116. km/sec

The TANGENTIAL velocity at 11:16 = 0. km/sec

The TOTAL velocity at 11:16 = 116. km/sec

The TANGENTIAL velocity at 12:17 = 0. km/sec

The TOTAL velocity at 12:17 = 116. km/sec

The following info is for estimating goodness of the fit

Fit is ok [ier=1]

Standard Deviation in the height = 0.43

Standard Deviation in start time measurement = 0.367E+02

Error in time = 0.97644E+01 using best fit method

See Taylor Error Analysis [Univ of Colorado] pg.78

Value of reduced Chi Squared returned from nllst2 = 0.317E-02

Reduced Chi Squared = 0.105E-01

Chi Squared = 0.210E-01

The probability for exceeding chi square = 0.997E+00

The correlation coefficient = 0.991E+00

The probability that no LINEAR correlation exists between the variables = 0.8720E-02

SEE BEVINGTON "Data Reduction and Error Analysis" [1969]

```
*******************

This is a 2 order run

********

*******

INPUT:

*******

error in

year doy time radii radius

1988 325 10:43:38 2.90 +/- 0.15

1988 325 10:51:52 2.90 +/- 0.15

1988 325 11:16:40 3.10 +/- 0.15
```

Structure being measured:

1988 325 12:17:25 3.80 +/- 0.15

Top of Cavity

OUTPUT:

START TIME:

tstart=DOY325 10: 5 from derivative = 0 Event begins at 2.80 Solar Radii Origin defined at DOY325 10: 0

RADIAL INFORMATION:

RADIAL ACCELERATION = 0.222E-01 +/- 0.508E-02 km/sec**2

The computed RADIAL coefficients and errors FROM NLLST2 are:

```
c(1) = 0.280E+01 +/- 0.947E-01 [solar radii]

c(2) = -0.605E-03 +/- 0.244E-02 [radii/min]

c(2) = -0.702E+01 +/- 0.283E+02 [km/sec]

c(3) = 0.574E-04 +/- 0.131E-04 [radii/min**2]

c(3) = 0.222E-01 +/- 0.508E-02 [km/sec**2]
```

The computed ERRORS in coefficients [BEVINGTON] are:

```
Approximate error in c(1) = 0.13389E+00 [radii] Bevington pg 154 (8-30)

Exact error in c(1) = 0.57257E-01 [radii] Bevington pg 154 (8-28)

Approximate error in c(2) = 0.34562E-02 [radii/min] Bevington pg 154 (8-30)

Exact error in c(2) = 0.12991E-02 [radii/min] Bevington pg 154 (8-28)

Approximate error in c(3) = 0.18586E-04 [radii/min**] Bevington pg 154 (8-30)

Exact error in c(3) = 0.64840E-05 [radii/min**] Bevington pg 154 (8-28)
```

error in

60.0 +/- 0.5

60.0 +/- 0.5

60.0 +/- 1.0

60.0 +/- 1.0

datatype

SMM

SMM

SMM

SMM

angle angle

ANGULAR INFORMATION:

ANGULAR ACCELERATION= 0.0000E+00 +/- 0.0000E+00[radians/sec**2]

The computed ANGULAR coefficients and errors FROM NLLST2 are:

```
a(1) = 60. +/- 0. [degrees]
```

a(2) = 0.000E+00 +/- 0.000E+00 [degrees/min]

a(2) = 0.000E+00 +/- 0.000E+00[rad/sec]

a(3) = 0.000E+00 +/- 0.000E+00 [degrees/min**2]

a(3) = 0.000E+00 +/- 0.000E+00 [rad/sec**2]

THE TANGENTIAL AND TOTAL VELOCITIES AT EACH DATA POINT ARE:

The TANGENTIAL velocity at 10:43 = 0. km/sec

The TOTAL velocity at 10:43 = 51. km/sec

The TANGENTIAL velocity at 10.51 = 0. km/sec

The TOTAL velocity at 10.51 = 62. km/sec

The TANGENTIAL velocity at 11:16 = 0. km/sec

The TOTAL velocity at 11:16 = 95. km/sec

The TANGENTIAL velocity at 12:17 = 0. km/sec

The TOTAL velocity at 12:17 = 176. km/sec

The following info is for estimating goodness of the fit

Fit is ok [ier=1]

Standard Deviation in the height = 0.43

Standard Deviation in start time measurement = 0.367E+02

Value of reduced Chi Squared returned from nllst2 = 0.452E-03

Reduced Chi Squared = 0.161E-02

Chi Squared = 0.161E-02

The probability for exceeding chi square = 0.983E+00

For a second order fit 3 correlation coefficients are given:

(Using equation of motion: $r = a + bt + at^{**}2$)

The correlation between the data and the term linear in time = 0.9913E+00

The correlation between the data and the time**2 term = 0.9991E+00

0The correlation between the data and the complete equation of motion = 0.9984E+00

SEE BEVINGTON "Data Reduction and Error Analysis" [1969]