Started appcal4v2: Tue Jul 2 20:10:03 2002 Hair line resizing will be attempted. But if it fails, a non-adjusted image will be created. No calibrated I or U data will be created. Reading 02d083.20_01.mk4.tscpinv Calibration was created: 7/02/02 Reading header from: 02d083.19_48.mk4.q Doing "fixmk4". Fixing negQU Fixing negative data between 35 365 Wrap Fixing negative data between 20 34 Wrap Fixing negative data between 20 34 Getting bias estimate between 0 9 Replacing NonFinite data with 1.000000 Replacing NonFinite data with 0.000000 Replacing NonFinite data with 0.000000 Replacing data <= 0.000000 with 1.000000 1, a=-8.38e+03 b=1.71e+01 R=1.00 Doing "fcyspline". 1, a=-3.21e+00 b=6.54e-03 R=1.00 Adjust for phase and backlash Getting coronal HairLine positions. 1, a=2.24e+04 b=-5.01e+01 R=0.70 Converged with 112.45 1, a=8.33e+03 b=3.82e+01 R=0.71 Converged with 275.10 Hairs found at pixels 112.45 275.10 HairLines were not between the expected places 92<112<110 --- 270<275<282 Calibrate using the invX matrix and ovGain Depolarizing (depol). 1, a=-2.35e-05 b=9.21e-07 R=0.77 1, a=-3.24e+00 b=6.07e-03 R=0.71 Depol: using Phi mean -1.87223 Depolarizing (depolscan). 1, a=1.72e-04 b=5.49e-08 R=0.03 Depolscan: using Amp mean 0.000184162 1, a=6.81e+00 b=-7.86e-03 R=0.24 Depolscan: using Phi mean 5.03865 Finding and removing rings. Shifting to heliocentric coordinates. Finding and removing neg. pB near poles. Rescaling data. Writing 02d083.19_48.mk4.pB Mean at pixel 152 is 1363.44 Single image time used: 12 seconds Reading header from: 02d083.19_51.mk4.q Doing "fixmk4". Fixing negQU Fixing negative data between 35 365 Wrap Fixing negative data between 20 34 Wrap Fixing negative data between 20 34 Getting bias estimate between 0 9 Replacing NonFinite data with 1.000000 Replacing NonFinite data with 0.000000 Replacing NonFinite data with 0.000000 Replacing data <= 0.000000 with 1.000000 1, a=-8.35e+03 b=1.71e+01 R=1.00 Doing "fcyspline". 1, a=-3.20e+00 b=6.54e-03 R=1.00 Adjust for phase and backlash Getting coronal HairLine positions. 1, a=2.30e+03 b=3.87e+00 R=0.17 Converged with 107.39 1, a=2.80e+03 b=1.72e+00 R=0.08 Converged with 274.92 Hairs found at pixels 107.39 274.92 Adjusting tscp size to standard HairLines. std_hairHi 275.67 std_hairLo 103.66 cal_hairHi 275.04 cal_hairLo 107.41 Adjusting the size and getting *new* HairLines. 1, a=2.17e+03 b=5.27e+00 R=0.24 Converged with 103.60 1, a=2.85e+03 b=1.54e+00 R=0.08 Converged with 275.67 Hairs found at pixels 103.60 275.67 Calibrate using the invX matrix and ovGain Depolarizing (depol). 1, a=9.26e-05 b=1.58e-06 R=0.92 1, a=-2.59e+00 b=2.59e-03 R=0.88 Depol: using Phi mean -2.01034 Depolarizing (depolscan). 1, a=-5.63e-05 b=5.66e-07 R=0.50 1, a=8.95e+00 b=-2.45e-02 R=0.43 Depolscan: using Phi mean 3.4269 Finding and removing rings. Shifting to heliocentric coordinates. Finding and removing neg. pB near poles. Rescaling data. Writing 02d083.19_51.mk4.pB Mean at pixel 152 is 1247.54 Single image time used: 9 seconds Reading header from: 02d083.19_54.mk4.q Doing "fixmk4". Fixing negQU Fixing negative data between 35 365 Wrap Fixing negative data between 20 34 Wrap Fixing negative data between 20 34 Getting bias estimate between 0 9 Replacing NonFinite data with 1.000000 Replacing NonFinite data with 0.000000 Replacing NonFinite data with 0.000000 Replacing data <= 0.000000 with 1.000000 1, a=-8.40e+03 b=1.71e+01 R=1.00 Doing "fcyspline". 1, a=-3.22e+00 b=6.54e-03 R=1.00 Adjust for phase and backlash Getting coronal HairLine positions. 1, a=2.27e+03 b=3.94e+00 R=0.17 Converged with 107.39 1, a=2.79e+03 b=1.73e+00 R=0.09 Converged with 274.91 Hairs found at pixels 107.39 274.91 Adjusting the size and getting *new* HairLines. 1, a=2.14e+03 b=5.33e+00 R=0.25 Converged with 103.60 1, a=2.83e+03 b=1.57e+00 R=0.08 Converged with 275.67 Hairs found at pixels 103.60 275.67 Calibrate using the invX matrix and ovGain Depolarizing (depol). 1, a=1.06e-04 b=1.37e-06 R=0.88 1, a=-2.81e+00 b=2.96e-03 R=0.86 Depol: using Phi mean -2.14035 Depolarizing (depolscan). 1, a=-1.99e-05 b=4.32e-07 R=0.40 1, a=7.71e+00 b=-1.61e-02 R=0.33 Depolscan: using Phi mean 4.0969 Finding and removing rings. Shifting to heliocentric coordinates. Finding and removing neg. pB near poles. Rescaling data. Writing 02d083.19_54.mk4.pB Mean at pixel 152 is 1250.59 Single image time used: 9 seconds Reading header from: 02d083.19_57.mk4.q Doing "fixmk4". Fixing negQU Fixing negative data between 35 365 Wrap Fixing negative data between 20 34 Wrap Fixing negative data between 20 34 Getting bias estimate between 0 9 Replacing NonFinite data with 1.000000 Replacing NonFinite data with 0.000000 Replacing NonFinite data with 0.000000 Replacing data <= 0.000000 with 1.000000 1, a=-8.35e+03 b=1.71e+01 R=1.00 Doing "fcyspline". 1, a=-3.20e+00 b=6.54e-03 R=1.00 Adjust for phase and backlash Getting coronal HairLine positions. 1, a=2.09e+03 b=3.56e+00 R=0.17 Converged with 107.39 1, a=2.55e+03 b=1.61e+00 R=0.09 Converged with 274.91 Hairs found at pixels 107.39 274.91 Adjusting the size and getting *new* HairLines. 1, a=1.97e+03 b=4.84e+00 R=0.25 Converged with 103.60 1, a=2.59e+03 b=1.45e+00 R=0.08 Converged with 275.67 Hairs found at pixels 103.60 275.67 Calibrate using the invX matrix and ovGain Depolarizing (depol). 1, a=9.55e-05 b=1.28e-06 R=0.87 1, a=-2.82e+00 b=2.96e-03 R=0.85 Depol: using Phi mean -2.15549 Depolarizing (depolscan). 1, a=-3.74e-05 b=5.14e-07 R=0.51 1, a=8.32e+00 b=-1.78e-02 R=0.36 Depolscan: using Phi mean 4.30293 Finding and removing rings. Shifting to heliocentric coordinates. Finding and removing neg. pB near poles. Rescaling data. Writing 02d083.19_57.mk4.pB Mean at pixel 152 is 1229.99 Single image time used: 9 seconds Reading header from: 02d083.20_04.mk4.q Doing "fixmk4". Fixing negQU Fixing negative data between 35 365 Wrap Fixing negative data between 20 34 Wrap Fixing negative data between 20 34 Getting bias estimate between 0 9 Replacing NonFinite data with 1.000000 Replacing NonFinite data with 0.000000 Replacing NonFinite data with 0.000000 Replacing data <= 0.000000 with 1.000000 1, a=-8.35e+03 b=1.71e+01 R=1.00 Doing "fcyspline". 1, a=-3.20e+00 b=6.54e-03 R=1.00 Adjust for phase and backlash Getting coronal HairLine positions. 1, a=2.67e+03 b=7.48e+00 R=0.25 Converged with 107.41 1, a=2.82e+03 b=7.27e+00 R=0.24 Converged with 274.99 Hairs found at pixels 107.41 274.99 Adjusting the size and getting *new* HairLines. 1, a=2.53e+03 b=9.11e+00 R=0.32 Converged with 103.61 1, a=2.96e+03 b=6.75e+00 R=0.23 Converged with 275.67 Hairs found at pixels 103.61 275.67 Calibrate using the invX matrix and ovGain Depolarizing (depol). 1, a=6.04e-05 b=9.98e-07 R=0.91 1, a=-2.96e+00 b=4.02e-03 R=0.94 Depol: using Phi mean -2.05702 Depolarizing (depolscan). 1, a=-7.27e-05 b=8.18e-07 R=0.68 1, a=1.13e+01 b=-3.89e-02 R=0.59 Depolscan: using Phi mean 2.51195 Finding and removing rings. Shifting to heliocentric coordinates. Finding and removing neg. pB near poles. Rescaling data. Writing 02d083.20_04.mk4.pB Mean at pixel 152 is 1259.80 Single image time used: 8 seconds Reading header from: 02d083.20_10.mk4.q Doing "fixmk4". Fixing negQU Fixing spot 528 Fixing spot 528 Fixing negative data between 35 365 Wrap Fixing negative data between 20 34 Wrap Fixing negative data between 20 34 Getting bias estimate between 0 9 Replacing NonFinite data with 1.000000 Replacing NonFinite data with 0.000000 Replacing NonFinite data with 0.000000 Replacing data <= 0.000000 with 1.000000 1, a=-8.36e+03 b=1.71e+01 R=1.00 Doing "fcyspline". 1, a=-3.21e+00 b=6.54e-03 R=1.00 Adjust for phase and backlash Getting coronal HairLine positions. 1, a=2.24e+04 b=-3.27e+01 R=0.37 Converged with 107.37 1, a=1.21e+04 b=2.98e+01 R=0.47 Converged with 275.10 Hairs found at pixels 107.37 275.10 Adjusting the size and getting *new* HairLines. 1, a=2.17e+04 b=-2.72e+01 R=0.34 Converged with 103.65 1, a=1.26e+04 b=2.80e+01 R=0.48 Converged with 275.67 Hairs found at pixels 103.65 275.67 Calibrate using the invX matrix and ovGain Depolarizing (depol). 1, a=-7.54e-05 b=8.36e-07 R=0.84 1, a=-1.82e+00 b=1.77e-03 R=0.20 Depol: using Phi mean -1.42158 Depolarizing (depolscan). 1, a=-1.05e-04 b=1.06e-06 R=0.66 1, a=1.15e+01 b=-4.04e-02 R=0.70 Depolscan: using Phi mean 2.40325 Finding and removing rings. Shifting to heliocentric coordinates. Finding and removing neg. pB near poles. Rescaling data. Writing 02d083.20_10.mk4.pB Mean at pixel 152 is 1385.05 Single image time used: 13 seconds Reading header from: 02d083.20_13.mk4.q Doing "fixmk4". Replacing NonFinite data with 1.000000 Replacing NonFinite data with 0.000000 Replacing NonFinite data with 0.000000 1, a=-8.41e+03 b=1.71e+01 R=1.00 Fixed ba-ewe 1 Doing "fcyspline". 1, a=-3.23e+00 b=6.54e-03 R=1.00 Adjust for phase and backlash Getting coronal HairLine positions. 1, a=5.50e+00 b=-4.54e-02 R=0.21 Converged with 94.76 1, a=-3.91e+01 b=1.44e-01 R=0.45 Converged with 282.00 Hairs found at pixels 94.76 282.00 HairLines were not between the expected places 92<95<110 --- 270<282<282 Calibrate using the invX matrix and ovGain Depolarizing (depol). 1, a=9.34e+01 b=-3.19e-01 R=0.14 1, a=-5.11e-01 b=2.27e-03 R=0.06 Depol: using Phi mean -0.00018998 Depolarizing (depolscan). 1, a=9.14e+01 b=-3.11e-01 R=0.14 1, a=4.84e+00 b=-6.45e-03 R=0.16 Depolscan: using Phi mean 3.3927 Finding and removing rings. Shifting to heliocentric coordinates. Finding and removing neg. pB near poles. Rescaling data. Writing 02d083.20_13.mk4.pB Mean at pixel 152 is 1609.71 Single image time used: 8 seconds Reading header from: 02d083.20_16.mk4.q Doing "fixmk4". Fixing negQU Fixing spot 465 Fixing spot 465 Fixing negative data between 35 365 Wrap Fixing negative data between 20 34 Wrap Fixing negative data between 20 34 Getting bias estimate between 0 9 Replacing NonFinite data with 1.000000 Replacing NonFinite data with 0.000000 Replacing NonFinite data with 0.000000 Replacing data <= 0.000000 with 1.000000 1, a=-8.36e+03 b=1.71e+01 R=1.00 Doing "fcyspline". 1, a=-3.21e+00 b=6.54e-03 R=1.00 Adjust for phase and backlash Getting coronal HairLine positions. 1, a=2.97e+04 b=-6.75e+01 R=0.47 Converged with 107.33 1, a=2.42e+04 b=-4.25e+00 R=0.03 Converged with 275.05 Hairs found at pixels 107.33 275.05 Adjusting the size and getting *new* HairLines. 1, a=2.85e+04 b=-5.85e+01 R=0.46 Converged with 103.62 1, a=2.45e+04 b=-5.29e+00 R=0.05 Converged with 275.67 Hairs found at pixels 103.62 275.67 Calibrate using the invX matrix and ovGain Depolarizing (depol). 1, a=-5.99e-05 b=4.90e-07 R=0.53 1, a=3.48e+00 b=-1.47e-02 R=0.33 Depol: using Phi mean 0.180887 Depolarizing (depolscan). 1, a=-1.17e-04 b=8.25e-07 R=0.58 1, a=3.07e+00 b=-6.76e-04 R=0.01 Depolscan: using Phi mean 2.91675 Finding and removing rings. Shifting to heliocentric coordinates. Finding and removing neg. pB near poles. Rescaling data. Writing 02d083.20_16.mk4.pB Mean at pixel 152 is 1421.37 Single image time used: 12 seconds Reading header from: 02d083.20_20.mk4.q Doing "fixmk4". Fixing negQU Fixing spot 488 Fixing spot 904 Fixing spot 488 Fixing spot 904 Fixing negative data between 35 365 Wrap Fixing negative data between 20 34 Wrap Fixing negative data between 20 34 Getting bias estimate between 0 9 Replacing NonFinite data with 1.000000 Replacing NonFinite data with 0.000000 Replacing NonFinite data with 0.000000 Replacing data <= 0.000000 with 1.000000 1, a=-8.41e+03 b=1.71e+01 R=1.00 Doing "fcyspline". 1, a=-3.23e+00 b=6.54e-03 R=1.00 Adjust for phase and backlash Getting coronal HairLine positions. 1, a=3.13e+04 b=-7.45e+01 R=0.52 Converged with 107.31 1, a=1.83e+04 b=2.54e+01 R=0.20 Converged with 275.05 Hairs found at pixels 107.31 275.05 Adjusting the size and getting *new* HairLines. 1, a=3.01e+04 b=-6.48e+01 R=0.52 Converged with 103.63 1, a=1.87e+04 b=2.36e+01 R=0.21 Converged with 275.67 Hairs found at pixels 103.63 275.67 Calibrate using the invX matrix and ovGain Depolarizing (depol). 1, a=-3.25e-05 b=4.35e-07 R=0.44 1, a=2.91e-01 b=-3.59e-03 R=0.14 Depol: using Phi mean -0.51671 Depolarizing (depolscan). 1, a=-8.27e-05 b=7.43e-07 R=0.52 1, a=9.67e+00 b=-2.82e-02 R=0.49 Depolscan: using Phi mean 3.33683 Finding and removing rings. Shifting to heliocentric coordinates. Finding and removing neg. pB near poles. Rescaling data. Writing 02d083.20_20.mk4.pB Mean at pixel 152 is 1447.70 Single image time used: 13 seconds Reading header from: 02d083.20_26.mk4.q Doing "fixmk4". Fixing negQU Fixing spot 37 Fixing spot 41 Fixing spot 44 Fixing spot 56 Fixing spot 156 Fixing spot 511 Fixing spot 37 Fixing spot 41 Fixing spot 44 Fixing spot 56 Fixing spot 156 Fixing spot 511 Fixing negative data between 35 365 Wrap Fixing negative data between 20 34 Wrap Fixing negative data between 20 34 Getting bias estimate between 0 9 Replacing NonFinite data with 1.000000 Replacing NonFinite data with 0.000000 Replacing NonFinite data with 0.000000 Replacing data <= 0.000000 with 1.000000 Culling ba 881 146.162109 (deg) 1, a=-8.41e+03 b=1.71e+01 R=1.00 Fixed ba-ewe 186 Fixed ba-ewe 881 Doing "fcyspline". 1, a=-3.22e+00 b=6.54e-03 R=1.00 Adjust for phase and backlash Getting coronal HairLine positions. 1, a=2.27e+04 b=-3.19e+01 R=0.37 Converged with 107.34 1, a=7.40e+03 b=5.59e+01 R=0.72 Converged with 275.11 Hairs found at pixels 107.34 275.11 Adjusting the size and getting *new* HairLines. 1, a=2.21e+04 b=-2.71e+01 R=0.35 Converged with 103.66 1, a=8.10e+03 b=5.32e+01 R=0.74 Converged with 275.68 Hairs found at pixels 103.66 275.68 Calibrate using the invX matrix and ovGain Depolarizing (depol). 1, a=-9.61e-05 b=7.23e-07 R=0.61 1, a=4.04e+00 b=-1.98e-02 R=0.47 Depol: using Phi mean -0.41725 Depolarizing (depolscan). 1, a=-8.17e-05 b=7.03e-07 R=0.52 1, a=1.43e+00 b=2.45e-03 R=0.09 Depolscan: using Phi mean 1.9766 Finding and removing rings. Shifting to heliocentric coordinates. Finding and removing neg. pB near poles. Rescaling data. Writing 02d083.20_26.mk4.pB Mean at pixel 152 is 1378.02 Single image time used: 17 seconds Reading header from: 02d083.20_28.mk4.q Doing "fixmk4". Fixing negQU Fixing spot 171 Fixing spot 183 Fixing spot 555 Fixing spot 564 Fixing spot 844 Fixing spot 931 Fixing spot 171 Fixing spot 183 Fixing spot 555 Fixing spot 564 Fixing spot 844 Fixing spot 931 Fixing negative data between 35 365 Wrap Fixing negative data between 20 34 Wrap Fixing negative data between 20 34 Getting bias estimate between 0 9 Replacing NonFinite data with 1.000000 Replacing NonFinite data with 0.000000 Replacing NonFinite data with 0.000000 Replacing data <= 0.000000 with 1.000000 1, a=-8.36e+03 b=1.71e+01 R=1.00 Doing "fcyspline". 1, a=-3.21e+00 b=6.54e-03 R=1.00 Adjust for phase and backlash Getting coronal HairLine positions. 1, a=2.98e+04 b=-5.83e+01 R=0.64 Converged with 107.34 1, a=8.48e+03 b=6.70e+01 R=0.86 Converged with 278.86 Hairs found at pixels 107.34 278.86 Adjusting the size and getting *new* HairLines. 1, a=2.92e+04 b=-5.45e+01 R=0.66 Converged with 108.72 1, a=6.43e+03 b=7.57e+01 R=0.84 Yipes, gaussfit got an edge! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! Singular matrix in routine LUDCMPSingular matrix in routine LUDCMPSingular matrix in routine LUDCMPgauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! Failed to converge curvefit gave lousy results Hairs found at pixels 108.72 295.00 Couldn't match std and image hairs Calibrate using the invX matrix and ovGain Depolarizing (depol). 1, a=-8.67e-05 b=6.40e-07 R=0.60 1, a=3.79e+00 b=-1.80e-02 R=0.48 Depol: using Phi mean -0.251176 Depolarizing (depolscan). 1, a=-1.20e-04 b=8.41e-07 R=0.56 1, a=4.16e+00 b=-3.43e-03 R=0.07 Depolscan: using Phi mean 3.39051 Finding and removing rings. Shifting to heliocentric coordinates. Finding and removing neg. pB near poles. Rescaling data. Writing 02d083.20_28.mk4.pB Mean at pixel 152 is 1446.38 Single image time used: 18 seconds Reading header from: 02d083.20_31.mk4.q Doing "fixmk4". Fixing negQU Fixing spot 624 Fixing spot 717 Fixing spot 877 Fixing spot 624 Fixing spot 717 Fixing spot 877 Fixing negative data between 35 365 Wrap Fixing negative data between 20 34 Wrap Fixing negative data between 20 34 Getting bias estimate between 0 9 Replacing NonFinite data with 1.000000 Replacing NonFinite data with 0.000000 Replacing NonFinite data with 0.000000 Replacing data <= 0.000000 with 1.000000 1, a=-8.41e+03 b=1.71e+01 R=1.00 Doing "fcyspline". 1, a=-3.22e+00 b=6.54e-03 R=1.00 Adjust for phase and backlash Getting coronal HairLine positions. 1, a=3.10e+04 b=-6.91e+01 R=0.70 Converged with 107.29 1, a=7.76e+03 b=7.03e+01 R=0.87 Converged with 278.93 Hairs found at pixels 107.29 278.93 Adjusting the size and getting *new* HairLines. 1, a=3.03e+04 b=-6.44e+01 R=0.72 Converged with 108.79 1, a=5.69e+03 b=7.92e+01 R=0.86 Yipes, gaussfit got an edge! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! Singular matrix in routine LUDCMPSingular matrix in routine LUDCMPSingular matrix in routine LUDCMPgauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! gauss_func zeros! Failed to converge curvefit gave lousy results Hairs found at pixels 108.79 295.00 Couldn't match std and image hairs Calibrate using the invX matrix and ovGain Depolarizing (depol). 1, a=-9.10e-05 b=6.44e-07 R=0.62 1, a=2.75e+00 b=-1.35e-02 R=0.36 Depol: using Phi mean -0.27618 Depolarizing (depolscan). 1, a=-1.37e-04 b=9.33e-07 R=0.59 1, a=6.29e+00 b=-1.59e-02 R=0.35 Depolscan: using Phi mean 2.70379 Finding and removing rings. Shifting to heliocentric coordinates. Finding and removing neg. pB near poles. Rescaling data. Writing 02d083.20_31.mk4.pB Mean at pixel 152 is 1443.30 Single image time used: 11 seconds Total time used : 139 seconds Total good images: 12 Total bad images: 2