Supporting Information for "Atmospheric and Ionospheric Responses to Hunga-Tonga Volcano Eruption Simulated by WACCM-X"

H.-L. Liu,^{1*} W. Wang,¹ J. D. Huba,² P. E. Lauritzen,³ and F. Vitt,^{1,4} Email: liuh@ucar.edu

- 1. High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA,
 - 2. Syntek Technologies, Fairfax, VA, USA,
 - 3. Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, CO, USA,
- 4. Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA.
 - (*) Corresponding author

Contents of this file

- 1. Figure S1
- 2. Figure S2

Introduction This Supporting Information includes two figures (Figure S1 and Figure S2).

Figure S1. Surface pressure perturbation (period < 1 hour) at UT1800 hour. Wave reflection from the Andes and L'₁ mode can be seen, with amplitudes of about 10 Pa.

Figure S2. Longitude-height cross section of zonal wind at 44°N at UT1536 hour.

Figure S3. Zonal (upper), vertical (middle), and TEC (lower) perturbations (period < 1 hour) at UT0855 hour.

Surface pressure

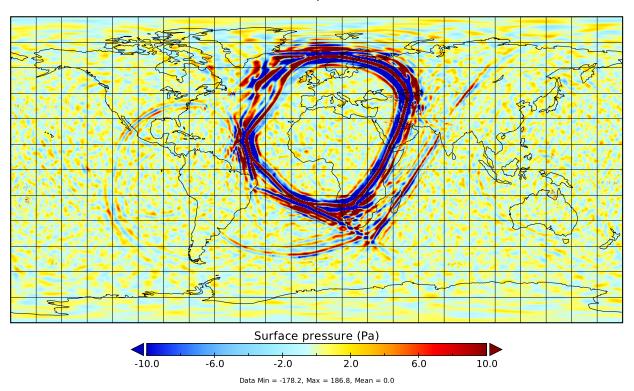


Figure S1: Surface pressure perturbation (period < 1 hour) at UT1800 hour. Wave reflection from the Andes and L' $_1$ mode can be seen, with amplitudes of $\sim \! \! 10$ Pa.

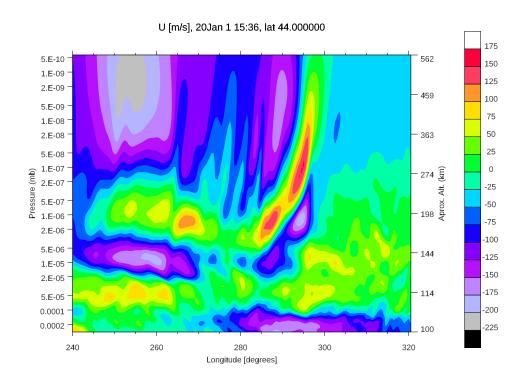
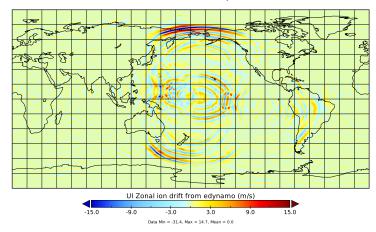




Figure S2: Longitude-height cross section of zonal wind at $44^{\circ}N$ at UT1536 hour.

UI Zonal ion drift from edynamo

WI Vertical ion drift from edynamo

Electron Column Density

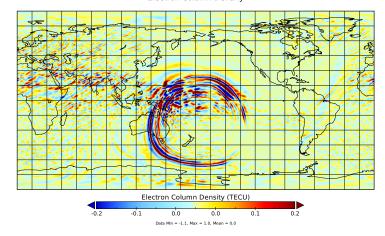


Figure S3: Zonal (upper), vertical (middle), and TEC (lower) perturbations (period < 1 hour) at UT0855 hour.