
 
 

 
Morning session Chair: Axel Brandenburg, Member of the  

Royal Swedish Academy of Sciences

09:00 Opening address Dan Larhammar, President of the Royal  
Swedish Academy of Sciences

09:05 Introduction of the Crafoord Laureate Jan-Erik Wahlund, Member of the Crafoord  
Prize Committee in Astronomy

09:10 Coronal Heating by Topological Dissipation 
of Magnetic Energy. 

Boon Chye Low, National Centre for 
Atmospheric Research, Colorado, USA, on 
behalf of the late Crafoord Laureate Eugene N. 
Parker, University of Chicago, USA

10:00 Coffee break (Included for registered participants)

10:30 Which theoretical approach to better explain 
the Solar Wind expansion: Fluid or Kinetic?

Milan Maksimovic, CNRS & LESIA, Paris  
Observatory, France

11:10 Stellar magnetic fields Moira Jardine, School of Physics & Astronomy,  
St Andrews, UK

11:50 Lunch (Included for registered participants)

Afternoon session Chair: Jan-Erik Wahlund, Member of the  
Crafoord Prize Committee in Astronomy

13:00 The Challenge of Exploring Our Sun: the 
60-Year Odyssey to Parker Solar Probe

Nicola Fox, Science Mission Directorate,  
NASA Headquarters, Washington, USA

13:40 Magnetic fields in nearby galaxies and the 
Milky Way

Rainer Beck, Max-Planck-Institut für 
Radioastronomie, Bonn, Germany

14:20 Coffee break

14:50 Cosmic Rays in Galaxies: From Microscales 
to Macroscales

Ellen Zweibel, University of Wisconsin-
Madison, USA

15:30 Exploring the Heliospheric Boundary and 
Beyond: From Voyager to Interstellar Probe

Pontus C. Brandt, The Johns Hopkins 
University Applied Physics Laboratory, USA

16.10 Speakers view of the future of the field All speakers, 5 minutes each

16.45 Closing remarks Jan-Erik Wahlund, Member of the Crafoord  
Prize Committee in Astronomy

16.50 End of symposium
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The near-perfect electrically-conducting solar corona

Lundquist number: ℒ! in a fluid flow of characteristic speed "", length scale L , and resistivity #

; “near-perfect conductivity” ⇔ # ≠ 0, negligible under

The Fundamental Magnetostatic Theorem of Parker (1972):
• Under coronal condition ℒ! ≫ 1, 3D magnetic fields attain quasi-static equilibrium by embedding

unlimitedly thin current sheets created inevitably by the actions of the Lorentz force. 

• Each sheet dissipates by “resistive magnetic reconnection”  via a local breakdown of the condition ℒ! ≫ 1 as 

sheet width 4#$%%& → 0.  The dissipation restores the local condition ℒ! ≫ 1, and current-sheets form afresh.

• Thus, the quasi-steady corona is in an endless non-equilibrium, maintaining large-scale force-balance and heated

on the small scales by ubiquitous, intermittent, resistive dissipation of current sheets..

• Coronal magnetic fields provide the energy for heating, replenished by the Poynting flux from the slow-moving,

turbulent heavy fluid below the coronal base.  

A pretty view of the million-degree hot, X-ray emitting, fully-ionized solar corona:
• Near-perfect conductivity is as much a consequence of as it is the reason for the corona’s high temperature and fully-

ionized state.  
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Focus of Lecture

• The elements of the Magnetostatic Theorem, discovered and developed in

Topological Dissipation and the Small-Scale Fields in Turbulent Gases
EN Parker, Astrophysical Journal, v. 174, p. 499, 1972

Spontaneous Current Sheets in Magnetic Fields
EN Parker, Oxford University Press, 1994

Topological Complexity and Tangential Discontinuity in Magnetic Fields. 

Å. M. Janse, B. C. Low, E. N. Parker, Journal of Physics of Plasmas v. 17, id 092901, 2010

• Lecture will follow Gene’s concept-transforming analysis that led to his theoretical discovery of the 

magnetically heated corona as a universal phenomenon.
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The million-degree hot, magnetically-dominated, solar corona
July 3, 2020

Temp ~6 10! K, #⊙≈4×1033 erg/s
$# ~ 0.5 km/s, L ~ 150 km
White Light, NASA SDO-HMI
July 3, 2020 

Temp ~ 1.6 10$ K, %% ≈ 1028-29 erg/s
$# ~ 500 km/s, L ~ 10& km
EUV 193 Å, NASA SDO-AIA
July 2, 2020

Temp ~ 3 10$ K 
X-ray, JASA Hinode XRT
July 3, 2020

LoS magnetic field ~10 – 100 Gauss
NASA SDO-HMI
July 3, 2020
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ubiquitous, intermittent, small-scale, heatingR⊙ = 7 10' km



The white-light corona, known to humankind since prehistorical time -
three-part helmet-streamer belts, Coronal Mass Ejections & the solar wind

Total eclipse Dec 14, 2020,
Argentina, composite frames,
Boe et al. 2021, ApJ, 914, id.L39.

Coronal Mass Ejection during 
total eclipse Dec 14, 2020
NASA/ESA SOHO/LASCO, C2 Coronagraph
Occulting disk ~ 2 times solar radii 
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Non-relativistic |v| ≪ c, Galilean invariant, single-fluid MHD equations

Newton:   ! !
!" + v . ∇ v = #

$% ∇×B ×B − ∇p - !∇& + (#∇&v + (&∇ ∇ . v

Mass:        
!
!" ! + ∇. ! v = 0 ; ! = )'*'

Entropy:   
!
!" + v . ∇ p!()/+ = + ; p = 2)' -,T   

Induction: !
!" B = ∇× v×B + .∇& B ; . = -!

$%.

Derived MHD variables: J =
/
$% ∇×B,    E = #

/ .∇×B − v×B ,     T = 01"
&23#
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Lorentz force = .
/

J ×B = .
01

∇×B ×B ~ 9 1

Electrostatic force = .
01

∇. E E ~ 9 2(

/(
NOTEWORTHY: speed of light c must not appear 
in the Newtonian MHD equations!

In the magnetically dominated corona:

< =
8?@
A3 ≪ 1,

#
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=
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Newton:   * )

)*
+ v . ∇ v = +

&,
∇×B ×B + .+∇-v + .-∇ ∇ . v

Mass:        )

)*
* + ∇. * v = 0  

Induction: )

)*
B = ∇× v×B

The frozen-in condition: Description of B in terms of the invariant flux ℱ across each fluid-surface 1 deforming in the flow v :

.

.*
ℱ ≡

.

.*
∫/ B 4 d6 = 0.  

∗ Magnetic flux-surfaces 1 on which B . d1 ≡ 0 move as fluid-surfaces. 
∗ Permanent partition of the fluid by the flux-surfaces of a given B into macroscopic, magnetic 

sub-volumes each containing its invariant same fluid.. 

Field-discontinuities/current-sheets :
∗ Two flux tubes in unrestricted 3D motions can force their way into direct tangential contact, 

producing tangential discontinuities in B across flux surfaces, related by Ampere’s Law to 
finite, discrete currents flowing in sheets of zero thickness on the flux surfaces.  

∗ Zero-thickness current sheets are the hallmark of perfect conductivity with 8 = 0 rigorously. 
∗ In the 8 ≠ 0 corona, current sheet thinning also occurs under ℒ0 ≫ 1 until resistive dissipation 

intervenes via local breakdowns of the ℒ0 ≫ 1 condition.  

Set ! = 0, $ = 0 for a magnetic field in a perfect fluid conductor of negligible pressure

Gene’s sketch of a magnetic flux-surface
swept out by a continuum of field lines.

Eulerian description

Lagrangian description

Two tangled magnetic flux tubes 
pushing into direct contact.
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Monotonic decay of the total energy ℇ:

.

.*
ℇ ≡ .

.*
∫#1213

+

-
*|v|- + +

4,
|>|- ?@?A?B =   - ∫#1213 .+|∇×v|- + .-|∇. v|- ?@?A?B ⇒ lim

*→6
|v|- = 0,

i.e., the Lorentz force drives an energy-minimizing evolution to a terminal force-free field denoted by B6(@, A, B) = J#KL + b6 @, A, B satisfying

∇×B6 ×B6= 0 , ∇ . B6= 0,     

subject to boundary conditions: N6, 2 = 0 at z = 0, L, and, |b6|- → 0 at @- + A- +/- → ∞. This static problem has an infinity of solutions among which
the unique terminal field B6(@, A, B) is identified by the initial-boundary problem to have evolved continuously from the initial field B @, A, B, 0 .  

Analyticity has been assumed but the frozen-in condition cautions that B6 may be discontinuous and embedded with current sheets.  The Magnetostatic 
Theorem shows that, in fact, a discontinuous B6 is the rule rather than the exception.

* )

)*
+ v . ∇ v = +

&,
∇×B ×B + .+∇-v + .-∇ ∇ . v ,

)

)*
* + ∇. * v = 0, 

)

)*
B = ∇× v×B ,  subject to 

Initial conditions:  Q = 0, * = *#, v = 0, B @, A, B, 0 = J#KL + >9:9*9;< @, A, B , 

Rigid boundary conditions:   N2 = 0, v = 0 at B = 0, # ; |>|- → 0, |v|- → 0 at @- + A- +/- → ∞.

The viscous relaxation of a boundary-anchored field to equilibrium (Parker 1972) 

Coronal “bipolar” magnetic field
%! = '!() %(+, -, ., 0) = %! + 2"#"$"%& +, -, .

All field lines anchored at z = 0, L.
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Three-flux interaction #$%&' ∞ > ℒC = D4E
C

>> 1 leading to resistive magnetic reconnection 

M
aking holes in flux surfaces

-Optical Analogy (Parker 1991)
hole

3D process
2D process

Current sheets, or, m
agnetic tangential discontinuities m

ay form
 

on any
flux surface w

ith or w
ithout m

agnetic neutral points(Janse,
Low

 &
 Parker 2010, Phys. Plasm

as 17, 092901).

Maroon, white flux-surfaces 
make contact thru hole 
opened up in blue flux-surface

Potential field with vertical current 
sheet, 0 < y < $!, by expulsion of third 
flux from between shaded fluxes.  

2D Cartesian process 3D processes, no ignorable coordinate
Any flux-surface is a candidate for  formation of 
magnetic discontinuity or current sheet

Unique potential field with X-type 
neutral point after resistive dissipation 
of current sheet and reconnection of 
field. 

Potential field, two shaded fluxes kept 
apart by third flux, no neutral point. 

Three representative
magnetic flux-surfaces

The current density of a 2D field in a Cartesian plane is always 
perpendicular to the field, 
∇×B × B = 0  ⇒ ∇×B = 7 8 9(;)=> with 9(;) ≠ 0 in 0 < y < ;"

y

x

z
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Flux-surfaces in
field reconnection 



Pausing to ask “What is field topology?”

Definition of topology. Magnetic flux-tubes as geometric objects have topological properties that are invariant 
under continuous deformation, no cutting nor re-gluing allowed.  Fortunately, to proceed we can

circumnavigate the mathematics of topological invariance,  e.g., how to quantify the mutual linkages
of tangled flux tubes anchored to z=0, L. It suffices today to use the concept of topological equivalence.  
Two geometric objects are topologically equivalent if one is continuously deformable into the other.

The Two-Plate magnetic field is a physical entity identified by its invariant topology !. 
The initial field B ", $, %, 0 is more than just a prescribed initial condition, for it identifies a 

unique field of an invariant topology !, that assumes different physical states generated by the 
continuous deformations of it.  This understanding clarifies the meaning of the initial-boundary value 

problem.  The Lorentz-force drives each given initial field B ", $, %, 0 of a fixed ! along an energy-
minimizing path in the space '@ of continuous topologically-equivalent fields to a unique force-free 
end-state BA . The non-trivial question thus arises whether BA is necessarily continuous and resides 

in '@ . We have arrived at the threshold of the Magnetostatic Theorem.
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Anisotropic Lorentz  Force: ∇×B ×B ≡ B G ∇ B - ∇ .
3
A3

Analytical force-free fields: Given the force-free field equations
∇×B ×B ≡ B G ∇ B - ∇ .

3
A3 = 0, ∇.B = 0,

analyticity implies ∇× ∇ .
3A

3 = 0, from vector calculus, essential for the magnetic pressure to be single-valued in 
space.  The necessary condition then follows,

under which a force-free field of a given topology H may be constructed as as an analytical solution of 

∇×B = IB , B G ∇I = 0,

using Ampere’s Law to express the current density being parallel to the field.  The scalar function I carries the solenoidal 
condition and field  topology.  This is the starting point of the Magnetostatic Theorem.

Structural nature of the Lorentz force, analytical fields and the 1972 Magnetostatic Theorem 

Tension force at each point P on a field-line lying in 
the so-called osculating circle of curvature that 
touches both the field line and its tangent at P.  

Pressure  force, everywhere directed normal 
to the level surfaces of constant, isotropic  
magnetic pressure 5$. 

B field-line

Credit: Wikipedia

∗ Knder the frozen-in condition, the two components may not be
geometrically compatible for mutual cancelation in a 3D force-free
field if we extraneously demand for the field to be analytical. 
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∇× B G ∇ B = 0 ,



Magnetostatic Theorem on BL as a power series in a small parameter +. 13

%"#"$"%& = %! + &"#"$"%&

The force-free field as a series expansion about the uniform field.  Consider the analytical force-free field

BA= MB +NA ≡ A"OP +  ∑CD.A NC RC, R << 1

∇× BA × BA ≡ BAG ∇ BA- ∇ .
3
AA3 0,        ∇ G BA = 0, 

SC,E = 0 at   z = 0,  L ,      for all n, so that AA,E = A" at   z = 0,  L .

The boundary layers at z = 0, L, thickness of the order of R, may be ignored in the limit of R → 0 by virtue of

analyticity.  Then, imposing the necessary condition on BA being analytical gives the rigorous result

∇× BAG ∇ BA = 0 ⟹ F
FE
NC = 0 to all order U ⟹ F

FE
BA= 0 ,

severely restricting all R-series force-free fields BA. Therefore, all but the simplest prescribed B V, W, X, 0

must evolve into a minimum-energy, force-free terminal field BA not everywhere continuous and embedding infinitesimally thin 

current-sheets on pieces of flux surfaces YG across which BAis tangentially discontinuous. The terminal field BA is approached by the

Lorentz force vanishing in the continuous part of BA as well as on the current sheets on YG, the latter in force-balance by having the 

magnetic pressure | BA|3 continuous across YG.  The force-free equations for BA have the complex form of Ampere’s Law:

∇× BA= I BA+ ∑G[G YG , | BA|3 H== 0, BAG ∇I = 0,

where [G YG is the discrete currents on YG and the vanishing angular bracket describes the continuity of | BA|3 across YG.



The coronal implications of the Magnetostatic Theorem 
• The two complementary sub-spaces of field topologies.  Consider the mathematical space of the topologies H of the 

continuous anchored fields realizable in the Two-Plate problem,

\IJJ H = \ICIJK&G/ H ∪ \/# H ,

the	two	sub-spaces	distinguished	by	whether	the	terminal	field	 BA of	topology	H is	analytical	or	discontinuous	

with	embedded,	force-balanced	current	sheets.			The	extreme condition F
FE

BA= 0 on the terminal field for HR \ICIJK&G/ H , 

implies that \ICIJK&G/ H is	“by	far	of	a	smaller	size”	than	\/# H in	a	probabilistic	sense.			Which	is	to	say,	if	a	topology	

HR \IJJ H is picked randomly, the probability is zero of having picked a HR \ICIJK&G/ H .

• Origin of the corona in its state interminable restless reconnection.  When a current sheet forms under near-perfect conductivity 

ℒ! ≫ 1 in a coronal field with HR \/# H , which then dissipates via a local breakdown of the condition ℒ! ≫ 1, the field 

topology changes from H to H’ with zero probability for H′R \ICIJK&G/ H .  So, the reconnected field forms fresh current 

sheets, and the process repeats endlessly with the field topology changing randomly within \/# H .  Thus, the coronal field is 

quasi-static on the large scale but is persistently pervaded with ubiquitous, intermittent, small-scale reconnection events.  The 

finite free magnetic energy of the rigidly anchored field must decrease in time, which only means that the inevitable current 

sheets form with diminishing current intensities.  The coronal base is not rigid as assumed for simplicity in the Two-Plate 

problem.   The Poynting flux from the slow, turbulent, heavy fluids below the coronal base readily replenishes the free 

magnetic energy and sustains the persistent heating of the corona. 
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The generality of the Magnetostatic Theorem 

• Proof of generality. It is formidable to construct force-free fields with force-balanced current-sheets as 

unknown free-surfaces to be determined self-consistently.  The generality of the Magnetostatic 

Theorem has been established by the wealth of illustrative examples in Gene’s monograph.  These 

examples were helped by the realization that the analytical force-free fields are distributed sparsely 

among the dense population of discontinuous force-free fields.  That is to say, an analytical force-free  

field generally lies “isolated” in a neighborhood of discontinuous force-free fields.  With this hindsight 

of the Magnetostatic Theorem, nudging an analytical force-free field from its endowed compliance 

with 
!
!6 B7= 0 can be shown to lead to irrepressible current sheets.   

The Lecture now concludes with an interesting example of current sheet formation.

15



The non-force-free Parker modification of the cylindrical Lundquist force-free field

Cylindrical field: S
B = J> T UV + J2 T KL

∇×B ×B = − +

-

.

.?
J2- + J>

- +
@'
(

?
UX

Lundquist force-free field: Y B = Z+ R UV + Z#(R)KL
∇×B ×B = 0 ⟺ ∇×B = \B, \= 1

Parker non-force-free field:  

B = Z+ R UV + J#KL

∇×B ×B = − +

-

.

.?
J>
- +

@'
(

?
UX

= −Z#(R)Z+(R)UX

.... to be treated as the initial field B(x, y, z, 0) in the 
initial-boundary value problem.

T
T# = 2.40
Z# T# = 0

T+ = 3.83
Z+ T+ = 0

L3 = M4 N

OPQRSQ, L) = L5= 1.2

−B!(R)B'(R)

cylindrical field exterior uniform field

TUVWXUYZ[, L) = M5(\)
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] = 0

] = )

_ = _6

The dynamical properties of twisted
ropes of magnetic field …
EN Parker, ApJ 191,245,1974.

Internal formation of current sheet via re-distributions of magnetic twist in the Parker Field

cylindrical axis

_ = _6

Outward-bulged, boundary of twisted field
Originally-vertical boundary of twisted field

Inward-compression of boundary of the pinched axial flux
Originally-vertical boundary of the self-compressing axial flux
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Current sheet most intense. Something for some other time!

How about breaking the up-down symmetry?
Something for some other time!



“…..any but the simplest field topologies had no equilibrium, because the field is in a state of 
nonequilibrium, i.e., rapid reconnection, if it has any but the simplest topologies.” 

E. N. Parker 
Spontaneous Current Sheets in Magnetic Fields, page 306
Oxford University Press, 1994

A concluding thought, Gene’s discovery is as much about a fundamental MHD property and 
process as it is about the nature of the magnetic heating of the corona as a universal 
astrophysical phenomenon.  Stars and galaxies have X-ray emitting million-degree coronae that 
must also be expected to be expanding into stellar and galactic winds as the compelling way of 
thinking about the universality and consistency of what physics can know.

A concluding quote on the atmospheric nature of the corona …
18



End
This presentation of 20 slides is made with no prejudice to the copyrights to it, 
if any, that may be held by the Estate of Eugene Newman Parker, the Crafoord

Foundation, and the University Corporation for Atmospheric Research, USA
Boon Chye Low, April 21, 2022
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