26 April,
2022

Crafoord

PRIZE

The Crafoord Prize in Astronomy 2020

The Crafoord Symposium in Astronomy

Solar wind and magnetic fields in space

The Faculty of Engineering, LTH, Annexet, MA7, Solvegatan 20, Lund. Seating is limited.
For registration and further information visit: www.kva.se/en/crafoordastronomy2022

Morning session

09:00 | Opening address

09:05 | Introduction of the Crafoord Laureate

09:10 | Coronal Heating by Topological Dissipation
of Magnetic Energy.

10:00 | Coffee break

10:30 | Which theoretical approach to better explain
the Solar Wind expansion: Fluid or Kinetic?

11:10 | Stellar magnetic fields

11:50 | Lunch
Afternoon session

13:00 | The Challenge of Exploring Our Sun: the
60-Year Odyssey to Parker Solar Probe

13:40 | Magnetic fields in nearby galaxies and the
Milky Way

14:20 | Coffee break

14:50 | Cosmic Rays in Galaxies: From Microscales
to Macroscales

15:30 | Exploring the Heliospheric Boundary and
Beyond: From Voyager to Interstellar Probe

16.10 | Speakers view of the future of the field

16.45 | Closing remarks

16.50 | End of symposium

KUNGL

VETENSEAPS

AKADEMIEN

THL DG DD ACADEW OF ICE MR

Crafoord video:

Chair: Axel Brandenburg, Member of the
Royal Swedish Academy of Sciences

Dan Larhammar, President of the Royal
Swedish Academy of Sciences

Jan-Erik Wahlund, Member of the Crafoord
Prize Committee in Astronomy

Boon Chye Low, National Centre for
Atmospheric Research, Colorado, USA, on
behalf of the late Crafoord Laureate Eugene N.
Parker, University of Chicago, USA

(Included for registered participants)

Milan Maksimovic, CNRS & LESIA, Paris
Observatory, France

Moira Jardine, School of Physics & Astronomy,
St Andrews, UK
(Included for registered participants)

Chair: Jan-Erik Wahlund, Member of the
Crafoord Prize Committee in Astronomy

Nicola Fox, Science Mission Directorate,
NASA Headquarters, Washington, USA

Rainer Beck, Max-Planck-Institut fir
Radioastronomie, Bonn, Germany

Ellen Zweibel, University of Wisconsin-
Madison, USA

Pontus C. Brandt, The Johns Hopkins
University Applied Physics Laboratory, USA

All speakers, 5 minutes each

Jan-Erik Wahlund, Member of the Crafoord
Prize Committee in Astronomy

THE CRAFOORD PRIZE IS AWARDED IN PARTNERSHIP BETWEEN THE ROYAL SWEDISH ACADEMY OF SCIENCES AND
THE CRAFOORD FOUNDATION IN LUND. THE ACADEMY IS RESPONSIBLE FOR SELECTING THE CRAFOORD LAUREATES.

P

https://www.youtube.com/watch?v=8dY5zypISMU&list=PLSs3YyR66CkrQA3xToUsuqPDdqfhsD4df&index=1&t=1s


Boon C. Low
Crafoord video:
https://www.youtube.com/watch?v=8dY5zypI5MU&list=PLSs3YyR66CkrQA3xToUsuqPDdqfhsD4df&index=1&t=1s


Crafoord Astronomy Symposium Lecture
April 26, 2022 1

Presenter

Boon Chye Low
High Altitude Observatory

National Center for Atmospheric Research™
Boulder, Colorado, USA

*The National Center for Atmospheric Research
is sponsored by the National Science Foundation, USA



Crafoord Astronomy Symposium Lecture
April 26, 2022

Spontaneous Current Sheets
in Solar and Stellar Coronae

Eugene N. Parker
Crafoord Laureate 2020

S. Chandrasekhar Distinguished Service Professor Emeritus

University of Chicago
Chicago, Illinois, USA



The near-perfect electrically-conducting solar corona

Lundquist number: £, in a fluid flow of characteristic speed vy, length scale L, and resistivity

L L’ | ; “near-perfect conductivity” < 17 # 0,negligible under | £,=—==—>>1

, T = T n
T v U

— _n
v Vo L

| Resistive diffusion speed

The Fundamental Magnetostatic Theorem of Parker (1972):

Under coronal condition £, > 1, 3D magnetic fields attain quasi-static equilibrium by embedding
unlimitedly thin current sheets created inevitably by the actions of the Lorentz force.
* Each sheet dissipates by “resistive magnetic reconnection” via a local breakdown of the condition £;, > 1 as
sheet width Lgpeer — 0. The dissipation restores the local condition £;) > 1, and current-sheets form afresh.
* Thus, the quasi-steady corona is in an endless non-equilibrium, maintaining large-scale force-balance and heated
on the small scales by ubiquitous, intermittent, resistive dissipation of current sheets..
* Coronal magnetic fields provide the energy for heating, replenished by the Poynting flux from the slow-moving,
turbulent heavy fluid below the coronal base.
A pretty view of the million-degree hot, X-ray emitting, fully-ionized solar corona:
* Near-perfect conductivity is as much a consequence of as it is the reason for the corona’s high temperature and fully-

ionized state.



Focus of Lecture

* The elements of the Magnetostatic Theorem, discovered and developed in
Topological Dissipation and the Small-Scale Fields in Turbulent Gases
EN Parker, Astrophysical Journal, v. 174, p. 499, 1972
Spontaneous Current Sheets in Magnetic Fields
EN Parker, Oxford University Press, 1994
Topological Complexity and Tangential Discontinuity in Magnetic Fields.
A. M. Janse, B. C. Low, E. N. Parker, Journal of Physics of Plasmas v. 17, id 092901, 2010

* Lecture will follow Gene’s concept-transforming analysis that led to his theoretical discovery of the

magnetically heated corona as a universal phenomenon.



The million-degree hot, magnetically-dominated, solar corona >
July 3, 2020

Ro = 7 105 km

ubiquitous, intermittent, small-scale, heating

2020/07 /03 02:03:14UT
ONAOJ/JAXA/MSU

Temp ~6 10% K, L=4x1033 erg/s LoS magnetic field ~10 — 100 Gauss Temp ~ 1.6 106 K, H, =~ 102829 erg/s Temp ~ 3 10° K

Vo ~ 0.5 km/s, L ~ 150 km NASA SDO-HMI vy ~ 500 km/s, L~ 10* km X-ray, JASA Hinode XRT
White Light, NASA SDO-HMI July 3, 2020 EUV 193 A, NASA SDO-AIA July 3, 2020

July 3, 2020

July 2, 2020



The white-light corona, known to humankind since prehistorical time -
three-part helmet-streamer belts, Coronal Mass Ejections & the solar wind

A: 16:09 UT

Coronal Mass Ejection during

total eclipse Dec 14, 2020
NASA/ESA SOHO/LASCO, C2 Coronagraph
Occulting disk ~ 2 times solar radii
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Total eclipse Dec 14, 2020,

Argentina, composite frames,
Boe et al. 2021, ApJ, 914, id.L39.



Non-relativistic |v| < ¢, Galilean invariant, single-fluid MHD equations

Newton:

Mass:

Entropy:.

Induction:

Derived MHD variables:

l—+(v V)]v—
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Electrostatic force = — [V.E]E~ 0 (;)

NOTEWORTHY: speed of light ¢ must not appear
in the Newtonian MHD equations!

[VXB]xB ~ 0(1)

In the magnetically dominated corona:
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Set f = 0,7 = 0 for a magnetic field in a perfect fluid conductor of negligible pressure

Newton:

Mass:

Eulerian description

Induction:

p [% + (v.V)] v = 41—” [VXB]XB +v,V?v + v,V[V .v]

a

P+ V.(pv) =0

Gene’s sketch of a magnetic flux-surface
swept out by a continuum of field lines.

d
S, B=Vx [vXB]

The frozen-in condition:

Description of B in terms of the invariant flux F across each fluid-surface X deforming in the flow v :

Lagrangian description

d

d s —_—
—F=—[, B-dZ=0.

Field-discontinuities/current-sheets :

Two tangled magnetic flux tubes
pushing into direct contact.

* Magnetic flux-surfaces £ on which B.dX = 0 move as fluid-surfaces.
* Permanent partition of the fluid by the flux-surfaces of a given B into macroscopic, magnetic
sub-volumes each containing its invariant same fluid..

* Two flux tubes in unrestricted 3D motions can force their way into direct tangential contact,
producing tangential discontinuities in B across flux surfaces, related by Ampere’s Law to
finite, discrete currents flowing in sheets of zero thickness on the flux surfaces.

* Zero-thickness current sheets are the hallmark of perfect conductivity with n = 0 rigorously.

* Inthe n # 0 corona, current sheet thinning also occurs under £,, > 1 until resistive dissipation
intervenes via local breakdowns of the £,, > 1 condition.




The viscous relaxation of a boundary-anchored field to equilibrium (Parker 1972)

p [% +(v. V)] v= ﬁ [VXB]XB + v, V?v + v,V[V .v], FL* \}‘\2\_?1)&/ °
%
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a - 3 ik, /Al
E B=Vx [VXB]’ SUbJeCt to Coronal “bipolar” magnetic field 70 720

Bo = Boz B(x,y,2,0) = Bo + binitia (x, 7, 2)

All field lines anchored at z =0, L.

| Initial conditions: t =0, p = py, v=0,B(x,v,2,0) = ByZ + binitia1 (X, V,2),

| Rigid boundary conditions: b, =0, v=0atz=0, L; |b|> =0, |v|?> > 0at (x% + y?)¥/? > oo,

Monotonic decay of the total energy €:

d d 1 1
Le=dy [Ep|v|2+8—n|b|2] dxdydz = -

dt dt v1|VXV|? + v,|V.v|?] dxdydz = lim |v|2 = 0,

t->o0

Jb<z<L[

i.e., the Lorentz force drives an energy-minimizing evolution to a terminal force-free field denoted by B, (x,y,2z) = ByZ + b, (x,y, z) satisfying

[VXBy]XBy=0, V.B,=0,

subject to boundary conditions:|b,, , = 0atz=0, L, and, |b,|? = 0at (x2 4+ y2)1/2 > oo/ This static problem has an infinity of solutions among which
the unique terminal field B, (x, y, 2) is identified by the initial-boundary problem to have evolved continuously from the initial field B(x, y, z, 0).

Analyticity has been assumed but the frozen-in condition cautions that B, may be discontinuous and embedded with current sheets. The Magnetostatic
Theorem shows that, in fact, a discontinuous B, is the rule rather than the exception.




i . voL . . .. . .
Three-flux interaction under o > £, = —=>> 1 leading to resistive magnetic reconnection

n

2D Cartesian process

Potential field, two shaded fluxes kept
apart by third flux, no neutral point.

3D processes, no ignorable coordinate

Any flux-surface is a candidate for formation of
magnetic discontinuity or current sheet

Potential field with vertical current
| sheet, 0 <y <y, by expulsion of third
flux from between shaded fluxes.

Unique potential field with X-type
neutral point after resistive dissipation
of current sheet and reconnection of
field.

Three representative
magnetic flux-surfaces

Maroon, white flux-surfaces
make contact thru hole
opened up in blue flux-surface

The current density of a 2D field in a Cartesian plane is always
perpendicular to the field,
[VXB]XB=0 = VxB=35§(x)I(y)ZwithI(y) #0in0<y<y,

10

Flux-surfaces in
field reconnection
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Pausing to ask “What is field topology?”

Definition of topology. Magnetic flux-tubes as geometric objects have topological properties that are invariant
under continuous deformation, no cutting nor re-gluing allowed. Fortunately, to proceed we can

circumnavigate the mathematics of topological invariance, e.g., how to quantify the mutual linkages

of tangled flux tubes anchored to z=0, L. It suffices today to use the concept of topological equivalence.

Two geometric objects are topologically equivalent if one is continuously deformable into the other.

The Two-Plate magnetic field is a physical entity identified by its invariant topology 7.
The initial field B(x, y, z, 0) is more than just a prescribed initial condition, for it identifies a
unique field of an invariant topology T, that assumes different physical states generated by the
continuous deformations of it. This understanding clarifies the meaning of the initial-boundary value
problem. The Lorentz-force drives each given initial field B(x, y, z, 0) of a fixed T along an energy-
minimizing path in the space Wy of continuous topologically-equivalent fields to a unique force-free
end-state B,,. The non-trivial question thus arises whether B, is necessarily continuous and resides

in Wx. We have arrived at the threshold of the Magnetostatic Theorem.

11




Structural nature of the Lorentz force, analytical fields and the 1972 Magnetostatic Theorem

Anisotropic Lorentz Force: [VXB]xB =[B-V]|B-V EBZ

] —_

Tension force at each point P on a field-line lying in Pressure force, everywhere directed normal
the so-called osculating circle of curvature that to the level surfaces of constant, isotropic
touches both the field line and its tangent at P. magnetic pressure B2,

B field-line

* Under the frozen-in condition, the two components may not be

4 geometrically compatible for mutual cancelation in a 3D force-free
Credit: Wikipedia field if we extraneously demand for the field to be analytical.
Analytical force-free fields: Given the force-free field equations

[VXB]xB = [B - V] B-VEBZ] -0, V.B=0,

analyticity implies VX {V [E BZ]} = 0, from vector calculus, essential for the magnetic pressure to be single-valued in

space. The necessary condition then follows,

Vvx{[B-V]B}=0,

under which a force-free field of a given topology 7" may be constructed as as an analytical solution of
VxB=aB, B-Va=0,

using Ampere’s Law to express the current density being parallel to the field. The scalar function a carries the solenoidal
condition and field topology. This is the starting point of the Magnetostatic Theorem.

12



Magnetostatic Theorem on B, as a power series in a small parameter €. 13

The force-free field as a series expansion about the uniform field. Consider the analytical force-free field

Bo=Bg+by = BgZ + Yp1 by €™, €<<1 4}1/ ?y K
— 1p2 N / X

(VX Boo)x B, = [Boo' V] Bo-V [EBOO] 0, V:-Byp=0, >@\§K\\\//{

bn,=0 at z=0, L, foralln,sothatB,,=Byat z=0, L. j\(\?\ ;(g\\

The boundary layers at z = 0, L, thickness of the order of €, may be ignored in the limit of € = 0 by virtue of 2&

analyticity. Then, imposing the necessary condition on B, being analytical gives the rigorous result =0
3 5 Binitiar = Bo * Dinitiau
VX[(By'V)By,] =0 = Eb" =0toallordern = 5. Bo=0,
severely restricting all e-series force-free fields B,. Therefore, all but the simplest prescribed B(x, y, z, 0)
must evolve into a minimum-energy, force-free terminal field B, not everywhere continuous and embedding infinitesimally thin
current-sheets on pieces of flux surfaces §; across which B, is tangentially discontinuous. The terminal field B, is approached by the
Lorentz force vanishing in the continuous part of B, as well as on the current sheets on §;, the latter in force-balance by having the
magnetic pressure | By |? continuous across S;. The force-free equations for B, have the complex form of Ampere’s Law:
VX Beo= @ Bo+ 2 Ci[S;], (| Bo|?)s;= 0, B Va =0,

where CG;[S;] is the discrete currents on S; and the vanishing angular bracket describes the continuity of | B, |? across S;.




The coronal implications of the Magnetostatic Theorem

14
* The two complementary sub-spaces of field topologies. Consider the mathematical space of the topologies T of the

continuous anchored fields realizable in the Two-Plate problem,
TaulT] = Tanalytic [T1UTe[TT,
the two sub-spaces distinguished by whether the terminal field B, of topology T is analytical or discontinuous

with embedded, force-balanced current sheets. The extreme condition :—Z Bo= 0 on the terminal field for T'e T gpqiytic[T],

implies that T gnaiytic[T] is “by far of a smaller size” than T¢s[7'] in a probabilistic sense. Which is to say, if a topology

Te T,;[T] is picked randomly, the probability is zero of having picked a T'e T anatytic [T].

* Origin of the corona in its state interminable restless reconnection. When a current sheet forms under near-perfect conductivity
Ly > 1ina coronal field with T'e T s[T], which then dissipates via a local breakdown of the condition Ly > 1, the field
topology changes from T to T’ with zero probability for T'e ']I‘analytic[ﬂ"]. So, the reconnected field forms fresh current
sheets, and the process repeats endlessly with the field topology changing randomly within T.;[T]. Thus, the coronal field is
guasi-static on the large scale but is persistently pervaded with ubiquitous, intermittent, small-scale reconnection events. The
finite free magnetic energy of the rigidly anchored field must decrease in time, which only means that the inevitable current
sheets form with diminishing current intensities. The coronal base is not rigid as assumed for simplicity in the Two-Plate
problem. The Poynting flux from the slow, turbulent, heavy fluids below the coronal base readily replenishes the free

magnetic energy and sustains the persistent heating of the corona.
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The generality of the Magnetostatic Theorem

* Proof of generality. It is formidable to construct force-free fields with force-balanced current-sheets as
unknown free-surfaces to be determined self-consistently. The generality of the Magnetostatic
Theorem has been established by the wealth of illustrative examples in Gene’s monograph. These
examples were helped by the realization that the analytical force-free fields are distributed sparsely
among the dense population of discontinuous force-free fields. That is to say, an analytical force-free
field generally lies “isolated” in a neighborhood of discontinuous force-free fields. With this hindsight

of the Magnetostatic Theorem, nudging an analytical force-free field from its endowed compliance

. 0 . .
with py B.,= 0 can be shown to lead to irrepressible current sheets.

The Lecture now concludes with an interesting example of current sheet formation.



The non-force-free Parker modification of the cylindrical Lundquist force-free field 16

< cylindrical field » «—— exterior uniform field
W'5\\\\\\\\\‘\\\\\\\\\‘\\\I‘\\\\\\\\\\\\\i\‘\\\\\\\\\

i Parker, B, = By=1.2

[

i

B=B4(R)$ + B,(R)2 ;
Cylindrical field: 1d ) B3) = B i
[VXB]XB = _{EE[BZZ+B¢]+?}R o i | _
B Lundquist, B, = J,(R) | 7
- l _
i } | i
n 1 | _
0.5 | I ]
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Lundquist force-free field: { UxB BB= _] 10(R)¢V+é0_(RLZ _q - E ]
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Parker non-force-free field: { [VXB]|xB = {2 — ¢] + }R//' E ]
= _]O(R)]l(R)R 05 ; E I —

: i
L ! ]
... to be treated as the initial field B(x, y, z, 0) in the N inward E outward | i
initial-boundary value problem. i Lorentz force é Lorentz force I |
*W O ‘\ I Y Y Y B ‘ I O Y Y ‘ [ \TE‘\ I I ‘ I O Y TVI | I Y Y Y B \7
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Ry, = 2.40 R, = 3.83

]0(R0)=0 ]1(R1)=0




Internal formation of current sheet via re-distributions of magnetic twist in the Parker Field

Current sheet most intense. Something for some other time!

/

cylindrical axis

\

The dynamical properties of twisted
ropes of magnetic field ...

EN Parker, ApJ 191,245,1974.

Outward-bulged, boundary of twisted field
Originally-vertical boundary of twisted field

Inward-compression of boundary of the pinched axial flux

7 Originally-vertical boundary of the self-compressing axial flux

How about breaking the up-down symmetry?
Something for some other time!

¢

) { { [
R=R1

0

| l } |
R=R1
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Spontancous Current Sheets in Magnetic Fields

(®)



18
A concluding quote on the atmospheric nature of the corona ...

..... any but the simplest field topologies had no equilibrium, because the field is in a state of
nonequilibrium, i.e., rapid reconnection, if it has any but the simplest topologies.”

E. N. Parker

Spontaneous Current Sheets in Magnetic Fields, page 306
Oxford University Press, 1994

A concluding thought, Gene’s discovery is as much about a fundamental MHD property and
process as it is about the nature of the magnetic heating of the corona as a universal
astrophysical phenomenon. Stars and galaxies have X-ray emitting million-degree coronae that

must also be expected to be expanding into stellar and galactic winds as the compelling way of
thinking about the universality and consistency of what physics can know.



End

This presentation of 20 slides is made with no prejudice to the copyrights to it,
if any, that may be held by the Estate of Eugene Newman Parker, the Crafoord
Foundation, and the University Corporation for Atmospheric Research, USA

Boon Chye Low, April 21, 2022
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