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ABSTRACT

We report the results of a magneto-hydrodynamic (MHD) simulation of a

convective dynamo in a model solar convective envelope driven by the solar ra-

diative diffusive heat flux. The convective dynamo produces a large-scale mean

magnetic field that exhibits irregular cyclic behavior with oscillation time scales

ranging from about 5 to 15 years and undergoes irregular polarity reversals. The

mean axisymmetric toroidal magnetic field is of opposite signs in the two hemi-

spheres and is concentrated at the bottom of the convection zone. The presence

of the magnetic fields is found to play an important role in the self-consistent

maintenance of a solar-like differential rotation in the convective dynamo model.

Without the magnetic fields, the convective flows drive a differential rotation

with a faster rotating polar region. In the midst of magneto-convection, we found

emergence of strong super-equipartition flux bundles at the surface, exhibiting

properties that are similar to emerging solar active regions.

Subject headings: magnetohydrodynamics(MHD) - Sun: dynamo - Sun: interior

1. Introduction

Despite the turbulent nature of solar convection, the sun’s large scale magnetic field

exhibits remarkable order and organization such as the 11-year sunspot cycle (e.g. Maunder

1922) and the Hale’s polarity rule of the bipolar active regions (Hale et al. 1919; Hale &

Nicholson 1925). In recent years, global fully dynamic three-dimensional (3D) convective

dynamo simulations have been making headway in producing the solar-like cyclic behavior

of the large scale magnetic field (e.g. Ghizaru et al. 2010; Racine et al. 2011; Käpylä et al.

2012; Augustson et al. 2013) and the self-consistent formation of buoyant, active region like

emerging tubes from dynamo generated strong toroidal fields (Nelson et al. 2011, 2013, 2014).
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Most of these simulations have differential rotation with cylindrical iso-rotation contours

throughout the convection zone (see review by Charbonneau 2013), and some are considering

rotation rate 3 times the solar rate. In this paper we present a convective dynamo simulation

driven by the solar radiative diffusive heat flux and maintains a differential rotation profile

that resembles more closely to the solar differential rotation in the convection zone in terms

of the pole-equator contrast and the more conical iso-contours of rotation in the mid-latitude

region. The convective dynamo produces a large-scale mean magnetic field with irregular

cyclic behavior and polarity reversals very similar to a convective dynamo presented in

Miesch et al. (2011). We demonstrate in this paper the important role the magnetic fields

play in the maintenance of the solar-like differential rotation. We also show the emergence

of strong super-equipartition flux tubes near the surface that exhibit some properties similar

to emerging solar active regions.

2. The Numerical Model

We solve the following anelastic MHD equations using a finite-difference spherical anelas-

tic MHD code (Fan 2008; Fan et al. 2013):

∇ · (ρ0v) = 0, (1)

ρ0

[

∂v

∂t
+ (v · ∇)v

]

= 2ρ0v ×Ω−∇p1 + ρ1g +
1

4π
(∇×B)×B+∇ · D (2)

ρ0T0

[

∂s1
∂t

+ (v · ∇)(s0 + s1)

]

= ∇· (Kρ0T0∇s1)− (D ·∇) ·v+
1

4π
η(∇×B)2−∇·Frad (3)

∇ ·B = 0 (4)

∂B

∂t
= ∇× (v ×B)−∇× (η∇×B), (5)

ρ1
ρ0

=
p1
p0

− T1

T0

, (6)

s1
cp

=
T1

T0

− γ − 1

γ

p1
p0
. (7)

In the above, s0(r), p0(r), ρ0(r), T0(r), and g = −g0(r)r̂ denote the profiles of entropy,

pressure, density, temperature, and the gravitational acceleration of a time-independent,

reference state of hydrostatic equilibrium and nearly adiabatic stratification, cp is the specific

heat capacity at constant pressure, γ is the ratio of specific heats, and v, B, s1, p1, ρ1, and

T1 are the velocity, magnetic field, entropy, pressure, density, and temperature to be solved

that describe the changes from the reference state. Ω denotes the solid body rotation rate
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of the Sun and is the rotation rate of the frame of reference, where Ω = 2.7 × 10−6rad s−1.

D is the viscous stress tensor: Dij = ρ0ν [Sij − (2/3)(∇ · v)δij], where ν is the kinematic

viscosity, δij is the unit tensor, and Sij is the strain rate tensor given by the following in

spherical polar coordinates:

Srr = 2
∂vr
∂r

(8)

Sθθ =
2

r

∂vθ
∂θ

+
2vr
r

(9)

Sφφ =
2

r sin θ

∂vφ
∂φ

+
2vr
r

+
2vθ

r sin θ
cos θ (10)

Srθ = Sθr =
1

r

∂vr
∂θ

+ r
∂

∂r

(vθ
r

)

(11)

Sθφ = Sφθ =
1

r sin θ

∂v2
∂φ

+
sin θ

r

∂

∂θ

( vφ
sin θ

)

(12)

Sφr = Srφ =
1

r sin θ

∂vr
∂φ

+ r
∂

∂r

(vφ
r

)

. (13)

K denotes the thermal diffusivity, and η is the magnetic diffusivity. In equation (3),

Frad = −16σsT0
3

3κρ0

dT0

dr
r̂ (14)

is the radiative diffusive heat flux, where σs is the Stephan-Boltzman constatn, κ is the

Rosseland mean opacity.

The simulation domain is a partial spherical shell with r ∈ [ri, ro], spanning from ri =

0.722Rs at the base of the convection zone (CZ) to ro = 0.971Rs at about 20 Mm below the

photosphere, where Rs is the solar radius, θ ∈ [π/2 − ∆θ, π/2 + ∆θ] with ∆θ = π/3, and

φ ∈ [0, 2π]. The domain is resolved by a grid with 96 grid points in r, 512 grid points in θ, and

768 grid points in φ. J. Christensen-Dalsgaard’s (JCD) solar model (Christensen-Dalsgaard

et al. 1996) is used for the reference profiles of T0, ρ0, p0, g0 in the simulation domain. We

assumed that s0 = 0 for the reference state. The heating (the last term in eq. [3]) due to the

solar radiative diffusive heat flux drives a radial gradient of s1 that drives the convection.

We set the thermal diffusivity K = 3× 1013 cm2 s−1, the viscosity ν = 1012 cm2 s−1, and the

magnetic diffusivity η = 1012 cm2 s−1 at the top of the domain, and they all decrease with

depth following a 1/
√
ρ0 profile. The stratification of the domain includes approximately

4 density scale heights between the top and the bottom, and thus the above diffusivities

decrease to K = 4.02 × 1012 cm2 s−1, ν = 1.34 × 1011 cm2 s−1, η = 1.34 × 1011 cm2 s−1

at the bottom of the CZ domain. The rationale for our choice of such depth dependent

diffusivities for the numerical experiments here is that, if the dominant spatial scales of
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convection decreases with height, it may be expected that more heat is transported by the

unresolved scales as one moves towards the top of the simulation domain, and hence the

greater diffusivities there. Furthermore, with a low magnetic diffusivity and viscosity in the

deep CZ, should buoyant magnetic structures develop, they would be able to better preserve

their magnetic buoyancy and rise. Given the above diffusivities, the various diffusive time

scales for the simulation are estimated as follows. The viscous and magnetic diffusive time

scales (∆r)2/ν and (∆r)2/η range from about 71 years near the bottom of CZ to about 10

years near the top, and the thermal diffusive time scale (∆r)2/K ranges from about 2.4 years

near the bottom to about 0.3 years near the top, where we have used the depth of the CZ

domain ∆r for the estimate.

We impose ∂s1/∂r = 0 at the bottom and s1 = 0 at the top boundary. We also impose

a latitudinal gradient of entropy at the lower boundary:

(

∂s1
∂θ

)

ri

=
π∆si
∆θ

sin

(

π(θ − π/2)

∆θ

)

(15)

where ∆si = 431.4 erg g−1 K−1, corresponding to a pole to equator temperature difference

of about 6.8 K, to represent the tachocline induced entropy variation that can break the

Taylor-Proudman constraint in the CZ (Rempel 2005). At the two θ boundaries, s1 is

assumed symmetric. The velocity boundary condition is non-penetrating and stress free

at the top, bottom and the two θ-boundaries. For the magnetic field we assume perfect

conducting walls for the bottom and the θ-boundaries and radial field at the top boundary.

All quantities are naturally periodic at the φ boundaries.

For the initial state, we specify the initial s1 such that its horizontal average: <s1>t=0,

satisfies:

Kρ0T0

d <s1>t=0

dr
=

Ls

4πr2
− Frad, (16)

where Ls is the solar luminosity, Frad is the absolute magnitude of Frad given in equation

(14), and at the lower boundary ri, Ls/4πr
2 = Frad. Equation (16) lets the initial thermal

conduction together with radiative diffusion completely carry the solar luminosity, which

sets up an initial unstable entropy gradient <s1>t=0. We start the simulation with a small

initial seed magnetic and velocity field and let the magneto-convection evolve to a statistical

steady state.
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3. Results

3.1. Overview of the convective dynamo

Figure 1 shows the magnetic and kinetic energies in the statistically steady convective

flows in the simulation domain over a time span of about 74 years. The total magnetic

energy Em maintained by the dynamo is about 10% of the total kinetic energy Ek of the

convective envelope. The energy of the azimuthally averaged (mean) magnetic field Em,mean

only constitutes a small fraction of Em, oscillating from about 1% to 10% of Em.

Figure 2(a) shows the depth variation of the mean entropy gradient established in the

CZ domain in the statistical steady state. The entropy gradient reaches a value of about

4.26×10−6 erg−1K−1cm−1 at the top boundary at about 0.97Rs, which is of a similar order of

magnitude as the entropy gradient (∼ 10−5 erg−1K−1cm−1) at this depth in the solar model of

JCD. Figure 2(b) shows the various horizontally integrated energy fluxes (normalized to the

solar luminosity Ls) through the domain as a function of radius established in the statistical

steady state. These are respectively, the integrated radiative diffusive heat flux (red curve):

Lrad = 4πr2Frad, the convective enthalpy flux (black curve):

Lconv = 4πr2ρ0cp <vrT1> (17)

the conductive energy flux by thermal diffusion (yellow curve):

Lcond = −4πr2Kρ0T0

d <s1>

dr
, (18)

the kinetic energy flux (blue curve):

Lkin = 4πr2
ρ0
2

<v2vr> (19)

the viscous energy flux (black dashed curve):

Lvis = −4πr2 <viDir> (20)

the Poynting flux (green curve):

Lpoyn = −4πr2 <

(

1

4π
(v ×B)×B

)

r

>, (21)

the resistive energy flux (cyan curve):

Lres = 4πr2 <

(

1

4π
(η∇×B)×B

)

r

>, (22)
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and the sum of all the energy fluxes, Ltot, is shown as the dash-dotted curve in Figure 2(b).

In the above <> denotes averaging over the spherical shell surface and time. The gradual

decline of Ltot reflects a numerical deviation from exact energy conservation, which is mainly

caused by the numerical diffusion of the magnetic field due to the Alfvén wave-upwind

scheme used for advancing the induction equation (Fan 2008; Stone & Norman 1992). This

numerical dissipation of magnetic energy is not being put back into the thermal energy in

the entropy equation and results in a loss of the total energy, and hence a loss of about 13%

of the total energy flux exiting the domain at the top compared to the total energy flux

(Ls) entering the domain from the bottom. We note that the explicit resistive dissipation of

the magnetic field (due to η), and both the explicit viscous dissipation (due to ν) and the

numerical diffusion of momentum are put into the thermal energy in the entropy equation

as resistive and viscous heating to maintain energy conservation. From Figure 2, it can be

seen that the enthalpy flux of the resolved convection transports about 66% of the solar

luminosity in the middle of the CZ, and due to the high thermal diffusivity K, thermal

conduction also transports a substantial fraction of the solar luminosity (about 36% at the

middle of the CZ). The kinetic energy flux of the convective flows is downward and peaks

at about 16% of the solar luminosity. The energy fluxes due to the Poynting flux (mostly

downward), resistive, and viscous transport are all much smaller.

Figure 2(c) shows the depth variation of the peak downflow (solid black curve), and

the r.m.s. speed vrms (dash-dotted black curve), of the statistical steady convective flows

in the domain. Note in computing vrms, we take out the azimuthally averaged velocity

components and only sum up the azimuthally fluctuating parts of the velocity components.

Also shown are the corresponding magnetic field strength in equipartition with the peak

downflow speed (solid red curve) and the r.m.s. speed (dash-dotted red curve). It can be

seen that the equipartition field strength Beq corresponding to the peak down flow speed

reaches ≈ 63 kG, while Beq corresponding to the r.m.s. speed is ∼ 10 kG for the deep

and mid convection zone, and decrease to about 5000 G near the top boundary at about

r = 0.971Rs. Following Käpylä et al. (2012), we compute the following non-dimensional

numbers characterizing the convective flows. The Reynolds number Re = urms/νkf ranges

from about 130 at the bottom to about 50 at the top, and with a mid convection zone value

of about 128, where kf = 2π/(ro − ri) and urms = ((3/2) <vr
2 + vθ

2>) is the r.m.s. velocity

at each depth omitting the contribution from the azimuthal velocity. The Coriolis number

CO = (2Ω/urms,all kf ) = 1.3, where urms,all = ((3/2) < vr
2 + vθ

2 >) with the averaging <>

done for the entire domain. We can compare the values of these non-dimensional numbers

with the corresponding ones in Käpylä et al. (2012): Re = 36 and CO = 7.6. It appears

the convective flow in our dynamo simulation is moderately more turbulent as characterized

by the larger Re, especially in the deeper layers of the CZ. Our Coriolis number CO is
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significantly lower, indicating that our convective dynamo is operating in a significantly less

rotationally dominant regime. If we were to scale their typical r.m.s. velocity to be similar

to ours urms,all ≈ 100 m/s, then their CO would imply a significantly more rapidly rotating

stellar envelope (with the solar CZ depth) at about 5 times the solar rotation rate.

Figure 3(a) shows the latitude-time variation of the mean (azimuthally averaged) toroidal

magnetic field at a depth near the bottom of the CZ. The mean toroidal magnetic field tends

to be of opposite signs for the two hemispheres, and exhibits an irregular cyclic behavior

with oscillations of the field strength on time scales ranging from about 5 years to about 15

years and undergoes irregular sign/polarity reversals. The strongest mean toroidal field is

concentrated near the bottom of the CZ (see Figure 3(b)), peaking at about 7 kG. Figure

3(c) shows a shell-slice of Bφ at a depth near the bottom of the CZ, at a cycle maximum

phase indicated by the green line in Figure 3(a). It shows that strong toroidal fields Bφ of

a preferred sign (opposite for the two hemispheres) are concentrated in individual channels

or filaments in each hemisphere, reaching peak field strength of about 30 kG, which exceeds

the field strength in equipartition with the local r.m.s convective speed (Beq ≈ 13 kG) but is

below the equipartition field strength corresponding to the peak down flow speed (Beq ≈ 63

kG). Thus these strong field filaments are not passively advected by convective flows but

would be pinned down by the strong down flows if in their paths.

3.2. Maintenance of the solar-like differential rotation

Figure 4(a) shows the time and azimuthally averaged rotation rate in the convective

envelope self-consistently maintained in the convective dynamo simulation. It shows a solar-

like differential rotation profile (e.g. Thompson et al. 2003) with a faster rotation rate at the

equator than at the polar region by about 30% of the mean rotation rate, and more conical

shaped iso-rotation contours in the mid latitude zone. The time and azimuthally averaged

mean meridional flow pattern is shown in Figure 4b in terms of the mass flux function f

where ρ0 <v>= ∇ × [(f/r sin θ)φ̂]. The meridional circulation has a complex multi-cell

structure with a counter-clockwise (clockwise) cell pattern in the low latitude region of the

northern (southern) hemisphere, i.e. a poleward near-surface flow in the low latitude region.

Interestingly, we find that the presence of the magnetic field is necessary for the self-

consistent maintenance of the solar-like differential rotation profile in the current parameter

regime. We have carried out a hydrodynamic simulation (hereafter referred to as the HD

case) which is identical to the present convective dynamo simulation except that the magnetic

field is set to zero, and found that a very different differential rotation profile (Figure 4(f)) is

established in the statistical steady state of the HD simulation. It shows a significantly larger
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differential rotation with a faster rotation rate in the polar region than at mid-latitudes and

the equator. The iso-rotation contours are also more cylindrical. The meridional flow (Figure

4(g)) shows a more prominent counter-clockwise (clockwise) cell pattern in the northern

(southern) hemisphere in the mid depths in the CZ, with much weaker reversed cells in the

near surface layer.

To compare the transport of angular momentum in the dynamo and the HD cases,

we show in Figures 4(c), 4(d), and 4(e) the meridional profile of the angular momentum

flux density in the r⊥ direction (perpendicular to and away from the rotational axis) due

respectively to the Reynolds stress of the rotationally influenced convection (panel (c)):

RS = ρ0r⊥ <v′r⊥v
′

φ>, (23)

the viscous stress (panel (d)):

V S = ρ0νr⊥(<Sφr> sin θ+ <Sφθ> cos θ), (24)

and the Maxwell stress (panel (e)):

MS = r⊥
1

4π
<BφBr⊥>, (25)

where <> denotes time and azimuthal averages and ′ denotes the azimuthally varying com-

ponent. The meridional profiles of the angular momentum flux density RS and V S for the

corresponding HD case are shown in Figures 4(f) and 4(g). We find that there is a significant

difference in the angular momentum flux density by the Reynolds stress between the dynamo

and HD cases. The RS for the dynamo case shows an overall more outward transport in

its meridional distribution compared to that for the corresponding HD case. Near the lower

boundary in the mid latitude range, the presence of the concentrated magnetic field (which

helps to damp the convective downflows) results in a more enhanced outward RS flux at the

lower boundary layer. The angular momentum flux density MS due to the Maxwell stress

in the dynamo case (Figure 4(e)) is found to oppose RS, and its strength is the greatest

at the lower boundary layer where the magnetic field concentrates. The angular momen-

tum flux density V S simply acts to reduce the differential rotation as expected for both the

dynamo and the HD cases. The difference between the dynamo and the HD cases is more

clearly seen by evaluating the net angular momentum fluxes in the r⊥ direction integrated

over individual concentric cylinders of radii r⊥ centered on the rotation axis, as shown in

Figure 5(a) for the dynamo case and Figure 5(b) for the corresponding HD case. It can be

seen that the net angular momentum flux due to RS is outward throughout (except near

the top boundary) for the dynamo simulation (black curve in Figure 5(a)), which drives a

faster rotation in the outer equatorial region. The net angular momentum flux due to RS is
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mainly counteracted by the net flux due to MS by the Maxwell stress, with the remaining

difference balanced by the significantly smaller net fluxes due to V S and the meridional flow.

In contrast, the HD simulation shows a significant inward angular momentum transport due

to the Reynolds stress (black curve in Figure 5(b)) across the inner cylinders in the high to

mid latitude region. This drives a faster rotation in the polar region. Thus it appears that

the presence of the magnetic field alters the convective flows such that the resulting Reynolds

stress from the convective motions produces a more outward (away from the rotation axis)

net transport of the angular momentum needed to drive a solar-like differential rotation.

The Rossby number RO = vrms,all/Hp is about 0.74 for the dynamo case and 0.96 for the

HD case, where vrms,all = 125 m/s for the dynamo case and 157 m/s for the HD case, is the

r.m.s. velocity (with the azimuthally averaged mean flow velocity taken out) averaged over

the entire volume, and Hp is the pressure scale height at the bottom of the convection zone.

The Rossby number measures the importance of the Coriolis force in the force balance. The

lower Rossby number in the dynamo simulation shows that the the magnetic fields suppress

the convective motions so that they are more rotationally constrained.

A recent systematic study by Gastine et al. (2014) of rotating stellar convection con-

sidering a wide range of models shows that the differential rotation profile transitions from

being solar-like, with a faster rotating equator, to being anti-solar, with a faster polar ro-

tation rate, at a value of about 1 for the Rossby number. This result is found to be quite

general, independent of the detailed model setup (presence of a magnetic field, thickness of

the convective layer, density stratification). Our HD case with RO = 0.96 appears to be

very close to the transition, and a reduction of ∼ 23% of the overall r.m.s. velocity and

RO by the presence of the magnetic field in the dynamo case is able to significantly alters

the angular momentum transport by the rotationally constrained convection, leading to a

transition into the solar-like differential rotation. We note that even though the HD case is

quite close to the transition, its anti-solar differential rotation appears to be a stable solution

not dependent on the history, i.e. not one of two bistable states (Gastine et al. 2014). We

have arrived at the statistically steady HD solution with the anti-solar differential rotation

by either starting from the initial setup with a seed velocity field as described in section 2,

or by starting from the statistically steady state dynamo solution (for which the differential

rotation is solar-like) and zero out the magnetic field. The solar-like differential rotation

obtained in the convective dynamo simulation also appears to be a stable solution that is

not dependent on the history. The differential rotation at the pole and equator remain statis-

tically steady without exhibiting any systematic drift for the ∼> 74 year period (comparable

to the maximum viscous time scale near the bottom of CZ) we have run after the dynamo

solution has reached a statistical steady state. Also as we start the dynamo simulation from

the initial setup described in section 2, we find that the convective dynamo goes through
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an earlier phase of anti-solar differential rotation (for ∼ 6 years) before it evolves towards

the solar-like differential rotation profile as the mean entropy gradient and the convective

energy flux settle down to their statistical steady state. Thus it appears that the solar-like

differential rotation is the preferred stable solution in the dynamo case.

The transition to a solar-like differential rotation can alternatively be achieved in the

non-magnetic hydro simulations by simply increase the viscosity to reduce RO. We have

run another hydrodynamic simulation (hereafter referred to as the HVHD case, meaning

“high viscosity hydro”) where we increase the viscosity ν by 5 times (with the same ρ0
−1/2

depth dependence) compared to the HD case (or the dynamo case). The resulting r.m.s.

velocity of the statistical steady convection reached is vrms,all = 120m/s and the Rossby

number RO = 0.71, much closer to those of the dynamo case. The bottom row panels of

Figure 4 show respectively the resulting differential rotation profile (Figure 4(j)), meridional

circulation (Figure 4(k)), the angular momentum flux density in the r⊥ direction, RS (Fig-

ure 4(l)) due to the Reynolds stress, and V S (Figure 4(m)) due to the viscous stress. The

integrated net (outward) angular momentum fluxes across concentric cylinders of radius r⊥
centered on the rotation axis is shown in Figure 5(c). It is found that a solar-like differ-

ential rotation profile (Figure 4(j)) with faster rotating equator and with a more conical

iso-rotation contours in mid-latitude zones is established, although the contrast of rotation

rate between the equator and the polar region is bigger, about 44% of the mean rotation

rate (compared to about 32% in the dynamo case). The mean meridional circulation (Figure

4(k)) shows a counter-clockwise (clockwise) cell pattern in the low latitude region of the

northern (southern) hemisphere, i.e. a poleward near-surface flow in the low latitude region,

similar to the dynamo case (Figure 4(b)). We find that the angular momentum transport

in the r⊥ direction due to the Reynolds stress for the HVHD case is very similar to that for

the dynamo case, both in the meridional profile of the flux density (Figure 4(l) compared to

Figure 4(c)) as well as in the integrated net flux across the constant r⊥ concentric cylinders

(Figure 5(c) compared to Figure5(a)). But this similar outward net angular momentum flux

by the Reynolds stress is now balanced almost entirely by the transport due to the viscous

stress, with the absence of the Maxwell stress which is the major component that balances

the angular momentum flux by the Reynolds stress in the dynamo case. The comparison

between the dynamo and the HVHD cases suggests an effective role of enhanced viscosity

played by the magnetic fields, which (1) suppresses the large scale convective motions such

that they are more rotationally constrained (lower RO) to produce an outward transport of

the angular momentum by the Reynolds stress, necessary to drive a solar-like differential

rotation, and (2) takes up the main role to balance the Reynolds stress transport with the

Maxwell stress instead of the viscous stress.

Further in Figure 6 we show the various horizontally integrated energy fluxes through
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the domain for the HD case (upper panel) and the HVHD case (lower panel), in comparison

with the energy fluxes shown in Figure 2(b) for the dynamo case. It can be seen that the

dynamo case and the HVHD case show a similar convective energy flux Lconv (reaching about

66% Ls in the dynamo case and about 60% Ls in the HVHD case). In both the dynamo

and the HVHD cases, the downward kinetic energy flux Lkin (reaching about 16% Ls in the

dynamo and 10% Ls in the HVHD case) is significantly reduced compared to the HD case

(reaching about 45% Ls). In fact in the HD case (upper panel in Figure 6), the downward

kinetic energy flux is so large that the outward convective energy flux Lconv exceeds the solar

luminosity in the middle of the convection zone to counter it. The result here indicate again

the similar role played by the magnetic fields and the enhanced viscosity in suppressing the

downward convective flows.

3.3. Emerging flux

In the convective dynamo, the large-scale mean toroidal field as shown in Figure 3(b)

is produced by the latitudinal differential rotation shearing a dipolar poloidal mean field.

The reason that the mean toroidal field is concentrated towards the bottom of the CZ is

mainly due to a downward advective transport of the magnetic energy in the bulk of the

convection zone, as represented by <vr(Bθ
2 + Bφ

2)/8π> shown in Figure 7(a). This causes

the distribution of the magnetic energy (for both the mean field and the small scale field)

to be strongly concentrated towards the bottom (see Figure 7(b)). The decrease with depth

of the magnetic diffusivity η would also promote stronger fields towards the bottom but

is less important here because of the small magnitude of η and the long diffusive time

scale: (∆r)2/η ∼ 10 years, using the peak η value near the surface and the depth of the

CZ domain ∆r. The advective time scale for the downward magnetic energy transport

across the convection zone is ∆r/um ∼ 0.5 year is significantly shorter, where we have used

um =<vr(Bθ
2 + Bφ

2)> / <Bθ
2 + Bφ

2> evaluated at the middle of the convection zone as a

measure of the transport speed. Thus the advective transport acts more quickly.

In the midst of magneto-convectoin, we find occasional active region like flux emergence

events in the top layer of the simulation domain. Such an example is shown in Figure 8,

where panels (a), (b), (c), and (d) show respectively snapshots of Br, Bφ, vr and vφ at a

constant r slice at the depth of 30 Mm below the photosphere. The location of the emerging

bipolar region is indicated by an arrow in the panels. It is characterized by a diverging

bipolar pattern in Br (panel (a)) and the emergence of a strong toroidal field patch reaching

a peak field strength of 9800 G (panel (b)) (see also the online movie). The emerging region

corresponds to an up flow region in vr (panel (c)), but the upward velocity is not significantly
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different from that of other up flow convective cells. The zonal velocity vφ of the emerging

region shows a diverging pattern, and when averaged over the emerging region, is ∼ 100 m/s

faster than the mean zonal velocity of that latitude. Figure 8(e) shows the subsurface 3D

magnetic field configuration in the convective envelope by showing field lines traced from

randomly seeded points throughout the volume. The field lines are colored based on their

azimuthal field Bφ as indicated by the color table. It can be seen that relatively more coherent

bundles of strong toroidal flux are embedded in the turbulent magnetic fields. In Figure 8(f),

regions of strong field strength where the Alfvén speed (va) exceeds the r.m.s. convective

velocity (vrms) for the corresponding depth is outlined with the equipartition iso-surfaces

(with va/vrms = 1), which are again colored based on the Bφ value on the iso-surfaces. There

is a systematic preference for these strong flux regions to be green or of negative Bφ (red or

of positive Bφ) in the northern (southern) hemisphere. The arrows in Figures 8(e) and 8(f)

mark the toroidal flux bundle with super-equipartition field strength that gives rise to the

emerging region.

Figure 9 shows a more zoomed in view of the thermodynamic properties of the emerging

region at the same depth as that shown in the upper 4 panels of Figure 8. We see that there is

a systematic reduction of density (i.e. buoyant, see Figure 9(b)) and pressure (Figure 9(d)) in

the emerging region compared to the surrounding, although the reduction magnitude is rather

moderate compared to the fluctuations seen in strong downflow lanes and in strong vertical

flux tubes in the downflow lanes. The temperature change in the emerging region compared

to the surrounding is smaller, partly due to the large thermal conduction. Averaged over the

emerging region (area enclosed in the yellow contour in Figure 9(a), <ρ1/ρ0>≈ −1.6× 10−5,

<p1/p0>≈ −1.1 × 10−5, and <T1/T0>≈ 0.5 × 10−5. It can be seen that the temperature

change is relatively small compared to the density and pressure change in the emerging region.

This suggests that the buoyancy or reduction in density is mainly due to the reduction in

gas pressure provided largely by the presence of the magnetic pressure, instead of mainly

due to an increase in temperature. In other words, the buoyancy contribution is more from

the magnetic buoyancy than the thermal buoyancy.

As can be seen from Figure 8(e), the emerging flux region is the apex of a roughly east-

west oriented (toroidal) super-equipartition flux bundle which remain relatively coherent for

some distance, before the two ends connect in complex ways to other flux systems. The

following end of the coherent flux bundle extends into the middle of the CZ. The fact that

the emerging flux has a prograde zonal speed of ∼ 100 m/s relative to the mean zonal speed

of the latitude indicates that it is not a toroidal flux tube rising in isolation from the bottom

of the CZ. Because if it were it would have a retrograde flow due to angular momentum

conservation as is found in many previous studies of isolated rising flux tubes in the rotating

solar CZ (e.g. Caligari et al. 1995; Fan 2008, 2009). The emerging flux bundle must have



– 13 –

well mixed with the local plasma through reconnections, and is continually sheared and

amplified by the differential rotation and the local flows against resistive dissipation. The

sequence of images in Figure 10 show the sub-surface development of the super-equipartition

emerging flux bundle (marked by the arrow) over a 9 day period prior to the time of the

flux emergence event shown in Figure 8. It shows that local shear in the upper convection

zone contributes significantly to the development of the emerging flux bundle. The left

column images show iso-volumes of super-equipartition fields with the surface of the volume

colored by Bφ. The right column images show representative field lines traced from the

iso-volume corresponding to the emerging flux bundle. It can be seen that a segment of a

super-equipartition flux bundle in the middle of the convection zone is sheared and stretched

in the prograde direction into a hairpin turn with the upper side of the hairpin forming the

emerging flux bundle reaching the top boundary.

We have done a statistical study of the super-equipartition emerging fields. For a time

period of about 1 year centered at the cycle maximum phase (green line in Figure 3(a)) and

at an interval of 12 hours, we find in the shell slice at 30 Mm depth all the area where the

emerging horizontal field exceeds
√
2 times the field strength in equipartition with the r.m.s.

convective velocity of that depth. For each pixel (or grid point) of the selected emerging field

area, we compute a tilt angle of the horizontal field vector based on the local Bφ and Bθ.

The resulting tilt angle distribution of all the pixels is shown in Figure 11. The quadrant

of the tilt angle is such that, if the sign of the azimuthal field Bφ is consistent with Hale’s

polarity rule of the cycle, i.e. negative (positive) in the northern (southern) hemisphere,

then the tilt angle falls in quadrants I and IV. If the horizontal field vector is tilted clockwise

(anti-clockwise) from the cycle preferred azimuthal field direction in the northern (southern)

hemisphere by an acute angle, consistent with the mean tilt of solar active regions, then the

tilt angle falls in quadrant I. We find from Figure 11 that there is a preference for Hale’s

polarity rule for the emerging azimuthal field by a ratio of 2.4 to 1 in the area. For those

pixels satisfying Hale’s rule the mean tilt angle is 7.5◦, with an estimated uncertainty of 1.6◦.

Thus the super-equipartition emerging fields have a statistically significant mean tilt similar

to the active region mean tilt (e.g. Stenflo & Kosovichev 2012).

4. Discussions

We have presented a 3D convective dynamo driven by the solar radiative diffusive heat

flux in the solar CZ, and with a latitudinal gradient of entropy imposed at the bottom,

representing the tachocline induced thermal variation that can break the Taylor-Proudman

constraint in the CZ (Rempel 2005). The convective dynamo produces a large scale mean
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field that undergoes irregular cycles and polarity reversals, and self-consistently maintains

a solar-like differential rotation with faster rotation at the equator than at the polar region

by about 30% and more conical iso-rotation contours in mid latitudes (e.g. Thompson et al.

2003).

The irregular cyclic behavior of the mean field in our model differs from those in the

literature (e.g. Ghizaru et al. 2010; Racine et al. 2011; Käpylä et al. 2012). By comparing the

Reynolds number Re and the Coriolis number CO (as defined in Käpylä et al. (2012)) achieved

in our dynamo run with those of the cyclic dynamo simulation presented in Käpylä et al.

(2012) (see section 3.1), we find that their convective dynamo is operating in a significantly

more rotationally constrained regime, with their CO being about 5 times ours. Our convective

flows appear to be only moderately more turbulent compared to theirs as reflected in the

similar order of magnitude for the Re values. If we consider our convective r.m.s. velocity to

be similar to theirs, then their dynamo would be effectively operating in a stellar envelope

that is rotating at about 5 times the solar rotation rate. This is probably the main reason we

obtain a very different mean field dynamo behavior compared to that of Käpylä et al. (2012).

Our irregularly cycling convective dynamo model also differs significantly in many ways from

the cyclic convective dynamo model described in Ghizaru et al. (2010); Racine et al. (2011).

Their dynamo model used an implicit large eddy code with no explicit viscosity, magnetic

diffusion, and thermal diffusion. But our convective dynamo appears to be operating in a

more turbulent regime if we compare the convective downflow speed obtained: about 25 m/s

at r = 0.954Rs in (Ghizaru et al. 2010) vs. our ∼ 300 m/s at the same depth. Given that

both models use the solar rotation rate for the convective envelope, this suggests that their

dynamo model is also operating in a significantly more rotationally constrained regime with a

significantly lower Rossby number compared to ours. The Newtonian cooling treatment of the

entropy equation used in Ghizaru et al. (2010); Racine et al. (2011) is very different from our

treatment of the energy transport which forces the solar luminosity through the convective

domain. Furthermore, their model includes a sub-adiabatically stratified overshoot layer at

the bottom of the convection zone which our model does not have. All these contribute to

the significant differences in the resulting dynamo behavior.

In both Käpylä et al. (2012) and Racine et al. (2011), because of the significantly higher

CO or lower RO, the convective flows in their corresponding hydro cases in the absence of

the magnetic fields are already driving a solar-like differential rotation, and the addition of

the magnetic fields in their dynamo cases appear to mainly reduce the differential rotation

(Charbonneau 2013). On the other hand for our convective dynamo in a significantly less

rotationally constrained regime with RO closer to 1, the presence of the magnetic field is

found to play an important role for the maintenance of the solar-like differential rotation,

without which a faster rotating polar region results, as is shown with the corresponding
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HD simulation. A solar-like differential rotation profile can alternatively be achieved in the

hydro case by increasing the viscosity as shown in the HVHD simulation. The comparison

between the dynamo case and the HVHD case indicate that in several aspects the magnetic

field plays an effective role of enhanced viscosity to (1) suppress the large scale convec-

tive motions such that they become more rotationally constrained to produce an outward

transport of angular momentum by the Reynolds stress needed to drive a solar-like differ-

ential rotation, (2) take up the main role of balancing the Reynolds stress transport with

the Maxwell stress transport instead of the viscous stress under low viscosity conditions,

and (3) reduce the downward kinetic energy energy flux. Our resulting differential rotation

self-consistently maintained in the convective dynamo simulation is in fairly good agreement

with the observed solar differential rotation in both the pole-equator contrast and also the

more conical shaped iso-rotation contours in the mid-latitude zone. The more conical iso-

rotation contours are achieved by the latitudinal gradient of entropy imposed at the lower

boundary as has been described in Rempel (2005); Miesch et al. (2006). The latitudinal

gradient of entropy is spread into the bulk of the CZ due to the large thermal diffusivity,

and this latitudinal gradient in the CZ provides the necessary balance in the φ component

of the vorticity equation to allow for a non-cylindrical differential rotation to be established

(Rempel 2005). Thus the role of the imposed latitudinal entropy gradient is to change the

shape of the iso-rotation contours from cylindrical to more conical. It is not the reason for

the change of differential rotation from anti-solar (fast rotating pole) to solar-like (faster

equator) between the HD and the magnetic cases, both of which have the same latitudinal

entropy gradient imposed. That change is brought about by the change in the direction of

Reynolds stress transport of the angular momentum.

The large scale mean toroidal field, antisymmetric with respect to the equator, is con-

centrated at the bottom of the CZ, unlike many of the recent convective dynamo simulations

with cylindrical iso-rotation contours and significantly faster (than solar) rotation rates (e.g.

Nelson et al. 2013; Augustson et al. 2013), where strong wreath like toroidal field struc-

tures are present in the equatorial region of the bulk of the CZ. In the 3D magnetic field of

the present simulation (Figure 8), occasional more coherent toroidal flux bundles of super-

equipartition field strength are embedded in the turbulent small scale fields, as discussed in

section 3.3. Some of these super-equipartition flux bundles rise to the surface to produce

active region like flux emergence events. Although these emerging flux bundles show signif-

icant magnetic buoyancy, they are not flux bundles rising in isolation from the bottom of

the CZ, but are product of continued reconnection and shear amplification by local flows in

the CZ. There is a preference for the azimuthal field in the strong emerging field regions to

conform to Hale’s polarity rule by a ratio of 2.4 to 1 in area, and a statistical significant

mean tilt angle of 7.5◦ ± 1.6◦ for the emerging horizontal fields, consistent with the active
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region mean tilt. However, the violation from Hale’s rule is far greater than that of solar

active regions. This is because of the very weak mean field component (∼ 5% of the total

magnetic energy) in the current convective dynamo. It is very likely that our dynamo model

is still significantly over-estimating the giant-cell convective speed (Hanasoge et al. 2012)

and the Sun’s dynamo is operating in a significantly more rotationally constrained regime.

This is indicated by the more rotationally constrained convective dynamo models of Käpylä

et al. (2012); Augustson et al. (2013), which are able to achieved a more regular, solar cy-

cle like cyclic behavior and stronger mean field by effectively increasing the rotation rate.

With a significantly lower magnetic diffusion (than have been achieved by current global

convective dynamo models), the solar dynamo may be operating in a significantly stronger

field regime with a much more suppressed giant-cell convection, and lower Rossby number.

This may lead to a stronger Reynolds stress transport of angular momentum that needs to

be balanced by a stronger Maxwell’s stress and hence the generation of a stronger mean

field. But the question remains in regard to how such suppressed convective flows transport

the solar luminosity through the CZ, although the convective energy transport in the more

magnetic buoyancy dominated regime may be quite different. Furthermore, the inclusion

of an overshoot layer below the base of the CZ may be important for the operation of the

solar cycle dynamo. The convective dynamo model of Ghizaru et al. (2010); Racine et al.

(2011) has achieved a much stronger large scale mean field component, with the mean field

magnetic energy comparable to that of the small scale magnetic energy during cycle maxima

(compared to the 10% in our model), by allowing penetration and storage of the strong mean

field in the stable overshoot layer.
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Fig. 1.— The temporal variation of the total kinetic energy (Ek), total magnetic energy

(Em), and the azimuthally averaged mean magnetic field energy (Em,mean) of the statistically

steady convective flows in the simulation domain.
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Fig. 2.— Mean profiles established in the statistical steady state of the dynamo simulation:

(a) shows the depth variation of the mean entropy gradient; (b) shows the horizontally

integrated energy fluxes due to respectively, radiative diffusion Lrad (red curve), convection

Lconv (black curve), thermal conduction Lcond (yellow curve), kinetic energy flux Lkin (blue

curve), viscous flux Lvis (dashed line), Poynting flux Lpoyn (green curve), resistive flux Lres

(cyan curve), and the sum of all Ltot (dash-dotted black curve), as a function of depth (see

text for the expressions of Lrad, Lconv, Lcond, Lkin, Lvis, Lpoyn, and Lres); (c) shows the peak

downflow and the RMS convective speeds and their corresponding equipartition magnetic

field strenghs.
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Fig. 3.— (a) The latitude-time variation of the mean (azimuthally averaged) toroidal mag-

netic field at a depth (r = 0.73Rs) near the bottom of the CZ. (b) Azimuthally averaged

toroidal magnetic field distribution in the meridional plane at the time marked by the green

line in panel (a). (c) A shell slice of the toroidal magnetic field at a depth (r = 0.73Rs) near

the bottom of the CZ at the same time marked by the green line in panel (a).
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Fig. 4.— Top row panels from left to right show the time and azimuthally averaged mean

meridional profile of angular velocity (a), meridional flow mass flux (b), angular momentum

flux density in the r⊥ direction due to the Reynolds stress (c), the viscous stress (d), and

the Maxwell stress (e) resulting from the dynamo simulation. Middle row panels from left

to right show the same as those of the top row except for the results from the corresponding

HD simulation and there is not a panel for the Maxwell stress. Bottom row panels from left

to right show the same as the middle row, except for the results from the HVHD simulation.

See text for the expressions for the various angular momentum flux density RS, VS, and MS.
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Fig. 5.— Integrated angular momentum fluxes across cylinders centered on the rotation axis

as a function of the radial distance r⊥ from the rotation axis for respectively the dynamo

case (a), the corresponding HD case (b), and the HVHD case (c). The r⊥ of the tangent

cylinder of the base of the CZ is 0.722Rs



– 24 –

0.75 0.80 0.85 0.90 0.95
r (Rs)

-0.5

0.0

0.5

1.0

L 
(L

s)

Ltot

Lconv
Lrad

Lkin

Lcond

0.75 0.80 0.85 0.90 0.95
r (Rs)

-0.5

0.0

0.5

1.0

L 
(L

s)

Ltot

Lconv

Lrad

Lkin

Lcond

Fig. 6.— Same as Figure 2(b) but for the corresponding HD case (upper panel) and the

HVHD case (lower panel).
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Fig. 7.— (a) Advective flux of the horizontal magnetic field energy, and (b) the distribution

of horizontal magnetic field energy as a function of depth.
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Fig. 8.— Panels (a), (b), (c), and (d) show respectively snapshots of Br, Bφ, vr, and vφ at

a shell slice at the depth of 30 Mm below the photosphere, displayed on the full sphere in

Mollweide projection. A movie showing the evolution of Br, Bφ, vr at the 30 Mm depth, and

also Bφ at a depth near the bottom of the CZ, over a period of about 13 days centered around

the time instant shown in this Figure is also available in the electronic version. Panels (e)

and (f) show respectively 3D views of the magnetic field lines and the equipartition field iso-

surfaces of va/vrms = 1 with va being the Alfvén speed and vrms being the r.m.s. convective

velocity for the corresponding depth.
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Fig. 9.— Zoomed in view centered on the emerging region on the horizontal surface at the

same depth (30 Mm) as shown in Figure 8 with (a) showing Bφ and a yellow contour marking

the emerging region where Bφ < −5000 G and the ratio of the Alfvén speed over the r.m.s.

convective speed va/vrms > 1, (b) showing density change ρ1 relative to the reference state

ρ0 at that height, (c) showing temperature change T1 relative to the reference state T0, and

(d) showing pressure change p1 relative to the reference state p0.
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Fig. 10.— Left column images show iso-volumes of super-equipartition fields (where

va/vrms > 1) for a period of 9 days prior to the time of the flux emergence event shown

in Figure 8, with the arrow marking the evolution of the emerging flux bundle that produces

the flux emergence event shown in Figure 8. Right column images show representative field

lines traced from points in the iso-volume corresponding to the emerging flux bundle.
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Fig. 11.— Distribution of the tilt angles of the horizontal field vectors in strong emerging

field areas at 30 Mm depth. See text about the tilt angle quadrants I, II, III, and IV.


